
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Interactions between environmental sustainability goals and software
product quality: A mapping study

Gabriel Alberto García-Mirelesa,*, Mª Ángeles Moragab, Félix Garcíab, Coral Calerob,
Mario Piattinib

a Departamento de Matemáticas, Universidad de Sonora, Blvd. Encinas y Rosales s/n col., Centro, 83000 Hermosillo, Sonora, México
b Instituto de Tecnologías y Sistemas de Información, Universidad de Castilla-La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain

A R T I C L E I N F O

Keywords:
Environmental sustainability
Greenability
Interaction
Software product quality
ISO/IEC 25010

A B S T R A C T

Context: Sustainability is considered as either a quality requirement or a quality characteristic that should be
included in software when environmental protection concerns are being taken into account. However, addres-
sing sustainability in software projects might have an impact on the quality of the software product delivered.
Conflicting goals between sustainability and particular software product characteristics should be studied when
developing application software, since achieving users’ requirements can be a hindrance in the quest to meet
sustainability goals.
Objective: This paper aims to provide an overview of the approaches found in the literature for dealing with
interactions between software product quality and sustainability in the context of application software.
Method: A systematic mapping study is conducted to identify practices for managing interactions between
software quality characteristics and sustainability. The selected papers are classified according to the quality
characteristic considered and their influence on sustainability.
Results: Most of the 66 selected papers focused on validating current technologies concerning their support for
sustainability (46%%). The interaction between performance efficiency and energy efficiency is what is reported
most and there is a fairly positive interaction. In addition, reliability and usability point to a positive interaction
with energy efficiency, while security shows a conflicting interaction with energy efficiency. Functional suit-
ability and maintainability can present both positive and negative interaction, with different goals derived from
environmental sustainability.
Conclusions: Interactions between software quality and sustainability have been addressed within an explorative
approach. There is a need for additional research work to characterize the impact of interaction on both software
quality and sustainability. Furthermore, proposals should be validated in industrial settings.

1. Introduction

In recent years, software engineering has focused on developing
sustainable software, which is defined as “software, whose impacts on
economy, society, human beings, and environment that result from
development, deployment and usage of the software are minimal and/
or which have a positive effect on sustainable development” [1]. The
impacts can be studied in three distinct scope levels [2]: direct (e.g.
energy consumption), indirect (e.g. reducing energy consumption when
supporting a business process), or rebound effect (e.g. optimizing en-
ergy efficiency of a product could have the effect of increasing its de-
mand and therefore the overall energy consumption due to such pro-
duct).

From the three dimensions of sustainable development identified in
the Brundtland report [3] the environmental dimension, or “green”
dimension, constitutes the context of this paper. In this dimension,
sustainable software promotes energy efficiency, minimizes the en-
vironmental impact of the processes it supports, and has a positive
impact on social and/or economic sustainability [4].

This paper focuses on the area of application software development,
while also looking at the way environmental sustainability goals have
an impact on software product quality. As a matter of fact, practices
used to develop application software might well influence energy
consumption. For instance, Capra et al. [5] reported that the applica-
tion layer can increase the energy consumption of a server by up to 72%
%; management information systems applications which satisfy the

http://dx.doi.org/10.1016/j.infsof.2017.10.002
Received 8 April 2017; Received in revised form 3 October 2017; Accepted 6 October 2017

* Corresponding author.
E-mail addresses: mireles@mat.uson.mx (G.A. García-Mireles), MariaAngeles.Moraga@uclm.es (M.Á. Moraga), Felix.Garcia@uclm.es (F. García), Coral.Calero@uclm.es (C. Calero),

Mario.Piattini@uclm.es (M. Piattini).

Information and Software Technology 95 (2018) 108–129

Available online 09 October 2017
0950-5849/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2017.10.002
http://dx.doi.org/10.1016/j.infsof.2017.10.002
mailto:mireles@mat.uson.mx
mailto:MariaAngeles.Moraga@uclm.es
mailto:Felix.Garcia@uclm.es
mailto:Coral.Calero@uclm.es
mailto:Mario.Piattini@uclm.es
https://doi.org/10.1016/j.infsof.2017.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.10.002&domain=pdf

same functional requirements can mean up to 145%% increment in
energy consumption when they are executed in the same computer
system. Furthermore, Ardito et al. [6] found that software applications
have a significant impact on the power consumption of desktop com-
puters. Given an increased trend towards energy consumption due to
personal computers and mobile devices [7], it is relevant to study the
effect of software engineering practices on application software sus-
tainability.

The main goal of this work is to investigate the approaches proposed
in literature for dealing with interactions between software quality and
sustainability in the context of application software. To achieve this
goal, a Systematic Mapping Study (SMS) [8] was conducted, whose aim
was to obtain a set of relevant papers that describes the practices,
methods and techniques used to identify and resolve interactions be-
tween software quality and sustainability in the context of application
software. To fulfill this purpose, two main issues are researched.

The first matter dealt with is sustainability, which is considered to
be both a nonfunctional property of software and a software quality
characteristic. In the former case, it includes resource consumption,
greenhouse gas emissions, social sustainability and recycling [9], which
can be treated as nonfunctional requirements in software projects. From
the Green IT perspective, Ardito and Morisio [7] provide a summary of
recommendations found in literature about the way to improve energy
efficiency when the software application layer is considered. In this
latter case, sustainability can be considered a central quality attribute,
as safety and security, among others, are [10]. Using the Software
Quality Assessment based on the Lifecycle Expectation model, Ardito
et al. [11] proposed that energy efficiency was a subcharacteristic of the
efficiency characteristic, and should be considered during software
construction. Moreover, Calero et al. [12] extended the ISO/IEC 25010
[13] quality model by adding greenability into both the product quality
model and the quality in use model, thus providing practitioners with a
way to include environmental sustainability goals in software projects.
A new challenge, therefore, is how to handle the interactions of sus-
tainability with the rest of the quality characteristics.

The second issue is about interactions, which in the requirements
area are described as situations in which the satisfaction of one re-
quirement may affect the satisfaction of another [14]. With respect to
software quality and sustainability, several researchers have stated the
need to understand this interaction. Lago et al. [15] pointed out “It is
already extremely difficult to identify, address and balance quality
concerns in non-energy-aware software. In addition, when green con-
cerns enter the picture, they are even more pervasive and potentially
impact all other system qualities”. Furthermore, delivering high-quality
software may increase the level of energy consumption, making it dif-
ficult to meet software green goals [16]. Addressing both sustainability
and software quality may require an additional conceptual framework
in order to provide support to trade-offs analysis and decision making
[15].

As a result, from a practitioner's point of view, the SMS aims to
summarize the influence of sustainability concerns in specific quality
characteristics. Hence, they may use this information to make decisions
about the way environmental sustainability goals can be included in a
software project. From a researcher's perspective, the aim of this work
is to provide a classification of the topics addressed and the empirical
methods applied, as well as the way software quality characteristics
have been studied. Thus, the SMS can provide an initial identification of
papers so that further research can be started on topics barely addressed
as yet.

The remainder of this paper is structured as follows. Section 2 presents
the fundamentals about sustainability in software engineering, as well as
the outcomes of related literature reviews. Section 3 describes the method
used to conduct the mapping study. Section 4 sets out the results of the
mapping, and Section 5 presents the discussion (summary and implica-
tions). Section 6 gives a description of the study's limitations. Finally,
Section 7 provides the conclusions and proposes future work.

2. Background

This section provides an overview of the related work with regard to
environmental sustainability and software quality. The first part de-
scribes some notions of the concept sustainability in software en-
gineering. The second part presents a summary of related literature
reviews about software engineering and software quality.

2.1. Sustainability in software engineering

Sustainability is a term with multiple meanings, all of them refer-
ring generally to the “capacity of something to last for a long time” [17]
or the “capacity to endure” [18]. However, there is not a consensus in
the definition of the term. Hilty and Aebischer [19] noted that “many
controversies related to sustainability stem from the fact that people
think of different systems and functions to be sustained, as well as
different time horizons, …” Thus, sustainability can be discussed with
reference to a concrete system or a global system [4]. A concrete system
can be a specific software system [4,20] or any other specific natural or
man-made system. In contrast, sustainability of the global system
“implies the capacity for endurance given the functioning of all […]
systems in concert” [4].

Similar in scope to global sustainability, the concept of absolute
sustainability [19] refers to the definition of sustainable development
included in the Bruntland report: “sustainable development is devel-
opment that meets the needs of the present without compromising the
ability of future generations to meet their own needs” [3]. Addressing
sustainability in the context of software engineering is based on the
Bruntland definition. Software engineering research is focusing on
concerns about the impact of software systems on global sustainability
[4]. Incorporating the concept of sustainability into the software en-
gineering discipline implies a consideration of the impact of the soft-
ware in the surrounding environment throughout its life cycle stages,
e.g. development, operation and maintenance [1,17]. The impact can
be characterized in three orders of impact [2,21]: the most common
way to address sustainability in software is through energy efficiency
[20,22], but other effects can be considered [10], such as energy usage,
e-waste production, emissions caused by required infrastructure (first
order effect); in addition, there are changes in user behavior caused by
software (second order effects); and changes in social behaviors in-
duced by software systems that erode the benefits of optimizing energy
efficiency (third order effect).

In addition to energy consumption, this research also considers any
other type of resources studied, including the analysis of level of im-
pact; this is related to environmental sustainability, whose central goal
is “to improve human welfare by protecting natural resources [such as]
water, land, air, and ecosystem services” [23].

Sustainability during software development requires a “tangible
decomposition of the concept of sustainability” [23] expressed as di-
mensions. Several research proposals address the economic dimension,
social dimension, environment dimension, and technical dimension
[20,23,24], as the very minimum that should be taken into account, due
to the fact that “sustainability is achievable only when accounting for
all dimensions” [20]. From a practical point of view, sustainability di-
mensions can be studied separately before exploring an integrated view
[24].

This work is focused on the environmental dimension of sustain-
ability, which is also called the green dimension [17]. In this context,
green software has the same goals as sustainable software within the
environmental dimension of sustainability [25–27]. Taking into ac-
count its purpose, green software is broken down into green in software
and green by software [17]. Green in software is related to how to make
software in a more sustainable way in order to develop a more sus-
tainable software product, i.e., to develop a more environment-friendly
software. On the other hand, green by software refers to software de-
veloped for domains focusing on the preservation of the environment,

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

109

as well as to software that helps to manage energy-intensive applica-
tions. Similarly, Penzendstadler et al. [4] interpret sustainable software
in two ways: as software code that is sustainable, agnostic of purpose;
and also as a software purpose directed at achieving sustainability
goals. This research therefore focuses on green in software, since its
context is the development stage of application software.

2.2. Related literature reviews

Few systematic literature reviews have been conducted with regard
to sustainability and the software engineering discipline. Since the
goals of the reviews identified do not address interactions between
sustainability and software quality characteristics, this section presents
their main findings about papers that discuss sustainability in, and to-
pics related to, software quality.

The first review about sustainability in software engineering is
presented by Penzenstadler et al. [28] who reported that there is a
tendency to investigate sustainability in specific domains (e.g. trans-
port, avionics, among others) and also to develop approaches such as
conceptual models, software-based frameworks to be used in other
domains (e.g. civil engineering), and measures (e.g. sustainability in e-
business). In addition, they concluded that the field is highly complex,
highly-domain specific, and that there is a lack of proposals for devel-
oping sustainable software.

In a follow up review, Penzenstadler et al. [4] performed a more in-
depth overview on the trends of research in the topic area “Software
Engineering for Sustainability” (SE4S). They found that the most
common software engineering areas addressed in the selected articles
are: software design, software engineering models and methods, soft-
ware quality, and software requirements. These authors concluded that
the SE4S research topic has received wide-spread attention over the
past few years, though there is little reported evidence about the im-
plementation of methods in industrial settings. As a threat to validity,
they reported that they missed expected results because they did not
consider terms like ‘software quality’ in the search string [4].

As far as including sustainability in software quality models is
concerned, the state-of-the-art in software sustainability measures is
tackled in [22]. They found measures that focused on sustainability also
addressed other quality characteristics such as performance efficiency,
maintainability, portability, usability and reliability [22]. Concerning
green software metrics, Bozzelli et al. [29] found that application
software context is the most common category for measures. They
concluded that “research is continuously interested in developing and
proposing measurement techniques to measure or estimate application
energy consumption”.

In a nutshell, the systematic literature reviews previously alluded to
[4,28] cover the development of software in disciplines such as en-
vironmental management, transport, agriculture and business eco-
nomics, among others. Hence, they correspond to the green by software
category [17]. The other two reviews [22,29] focus on the definition of
measures to determine the extent to which any software is greener than
others. Although both papers point out that green measures are related
to other product quality characteristics, mainly related to performance
efficiency, they do not analyze the relationship between sustainability
and product quality.

3. Planning of the SMS to provide an overview of software quality
and sustainability

The research goal of this SMS is to identify interactions reported
between software product quality characteristics and the green aspects,
along with practices reported for managing them. The classification of
selected papers must answer the following two general questions:

• GQ1. What is the profile of papers addressing interactions between
environmental sustainability goals and product quality

characteristics when application software is developed?

• GQ2. What specific interactions between environmental sustain-
ability goals and product quality characteristics are described in
selected papers?
To answer GQ1, the profile of selected papers is determined by the
following sub-questions:

• GQ1-RQ1. What are the publication trends considering interactions
between green aspects and software product quality?
This question looks for trends about frequency of publication by
year, as well as the publications venues of selected papers.

• GQ1-RQ2. What software engineering topics are addressed?

To classify topics addressed by primary papers, the Guide to the
Software Engineering Body of Knowledge (SWEBOK) [30] is used.
Software product quality can be addressed in all stages of the software
development life cycle, and the interactions between quality char-
acteristics have been reported to be present in different life cycle pro-
cesses [31,32].

• GQ1-RQ3. What research approaches are reported in primary pa-
pers?
The research approaches are classified according to the Wieringa
classification [33] and the rules provided by Petersen et al. [34].

• GQ1-RQ4. What approaches are used to describe software quality in
the context of its interaction with sustainability aspects?

Software quality can be studied from diverse perspectives and using
manifold levels of abstraction [13,35]. This work is focused on the
product quality, although the process view might be applied when
software is developed [35,36]. The process view of quality can be op-
erationalized by counting defects during software life cycle activities
[37,38]. These are treated as surrogates of software quality. In contrast,
product quality models support the identification of specific properties
in software that can be defined, measured and used to evaluate product
quality from the user perspective in the context of tasks performed.
ISO/IEC 25010 provides a product quality model and a quality in use
model. The mission of the former is to define, measure, and evaluate
software quality during the software development stage, while the
latter is focused on the operational stage of a software product. This
research focuses on the characteristics of the product quality model.

Considering the specific interactions between environmental sus-
tainability goals and product quality, GQ2, should answer two sub-
questions:

• GQ2-RQ1. What practices, methods, techniques, models, or mea-
sures are used to manage interactions between software quality
characteristics and environmental sustainability goals?
It addresses the methods, process, models and measures applied to
identify and resolve conflicting interactions between software
quality and sustainability.

• GQ2-RQ2. What specific interactions between software quality
characteristics and environmental sustainability goals are presented
in selected papers?

The identification of characteristics involved in an interaction needs
to take into account the context in which an interaction is described or
found, as well as the particular subcharacteristics or attributes men-
tioned.

3.1. Search strategy

The development of a search strategy was based on Kitchenham and
Charters guidelines [8]. The identification of keywords was based on
the main terms: software application, interaction, software product
quality and sustainability (Table 1). Concerning interaction, the focus is
on technologies that manage interactions or trade-offs between

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

110

software product quality characteristics and sustainability. This in-
cludes approaches to identify interactions as well as to resolve
interactions. Interactions can be referred to by different terms such
as inconsistency, conflict, negative interaction, dependency, inter-
dependency, balance, tradeoffs, among others [14,32]. So, if a paper
explicitly mentions a sustainability term (Table 1) and any software
product quality term, it can be a candidate paper. The set of keywords
related to sustainability was formulated by taking into consideration
the review of examined literature in Section 2. The list of synonyms for
software product quality was extracted from a previous SMS which ad-
dressed the topic of software product quality [35].

With regard to the time span, the automatic search was conducted
for publications from 2000 until December 28, 2016. The lower limit
year was determined by checking publication trends reported in related
literature reviews. For instance, Bozzelli et al. [29] reported on papers
about measures in the green software engineering field since 2001.
Looking for sustainability in both software engineering and require-
ments for software systems, [28] reported that research papers have
been published since 2006.

The search string was tested on the Scopus database (http://www.
scopus.com/). After assessing the outcome of applying selection criteria
on papers retrieved from this database, automated searches were per-
formed on the databases of the ACM digital library (http://dl.acm.org/
dl.cfm), IEEE Xplore digital library (http://ieeexplore.ieee.org/Xplore/
home.jsp) and Web of Science (http://apps.webofknowledge.com/).
Appendix C includes some sections of the SMS review protocol.

3.2. Study selection

The process for identifying primary articles was divided into two
parts. The first part consisted of reading the title and/or abstract and of
applying the inclusion and exclusion criteria to select candidate papers.
The second part consisted of reading the full text in order to identify
primary papers. In contrast with the definition of primary paper [8],
this SMS considers not only empirical papers, but also other categories
of research papers [33]. The first author made the selection of the
primary papers by applying the exclusion and inclusion criteria. The
second author replicated the selection process, and the results were
checked by all authors; discrepancies were discussed and the final list
was obtained.

Inclusion criteria for selecting primary papers were as follows.

1. The article is written in English.
2. The paper is a peer-reviewed document, presented in a journal or

conference, or in a book of scientific content.
3. The paper tackles the field of Green in Software.
4. The paper discusses aspects of development, use, evaluation, or

disposal of application software. In general terms, the article should
include or discuss a method belonging to any SWEBOK knowledge
area [30] or activities and practices used to develop/maintain ap-
plication software that can be addressed in the ISO/IEC 12207 [39].

5. The approach discussed in the article addresses aspects both of

software product quality and of sustainability. In the former, it is
expected that the paper should include at least one term related to
software product quality, such as for instance, any of the quality
characteristics or subcharacteristics of the product quality model
described in the ISO/IEC 25010. With regard to sustainability, it is
expected that the article address how to improve energy efficiency
in software applications, as well as other approaches related to
improving sustainable development.

6. The article must mention and/or discuss the nature of the re-
lationship between software quality and sustainability. This includes
among other considerations, the identification of interactions, ap-
proaches for balancing quality and sustainability goals, conflicting
goals, tradeoffs between stakeholders’ goals about quality and sus-
tainability.

7. The paper discusses a practice, method, technique, model, process,
or tool that is developed or applied in the field of software en-
gineering. This work focuses on the green in software category [17].
Methods and practices can thus address the way environmental
sustainability impact can be measured, monitored, evaluated, and
optimized [21]. Since our focus is on software engineering practices,
we need to take into account requirements engineering activities,
whatever the domain in which they are applied may be.

8. The full article is accessible through the selected databases.

Exclusion criteria applied to retrieved articles were the following:

1. The full paper is not written in English.
2. The paper presents summaries, forewords of conference proceed-

ings, editorials or systematic literature reviews.
3. The paper is not accessible in full-text.
4. The paper presents a duplicate study.
5. The paper tackles the field of Green by Software.
6. The paper addresses software that is not considered application

software such as, embedded software, operating system software,
middleware, services and web services, servers and data servers,
software for optimizing communications networks, among others.

7. The paper discusses an approach to identify, model, analyze or
evaluate interactions and tradeoffs that is not applied in the soft-
ware engineering domain, or does it focus on describing methods of
the field of search-based software engineering.

8. The paper includes either software quality or sustainability, but
without providing support to identify interactions between software
quality and sustainability.

In total, 3973 records were retrieved from four databases. As a re-
sult of applying selection criteria to title and/or abstract, 298 papers
were selected as candidates. Selection criteria were applied again after
the full-reading of candidate papers, and 66 primary papers were
gathered. In Appendix A the main data used to categorize them are
shown.

In order to provide a quality assessment of the studies chosen, a
nine-question questionnaire was designed, derived from [40]. Each
question is rated with the values: not included (0), partially included
(0.5) and included (1). Authors evaluated each empirical study (34 of
out 66 papers) in order to reach a final value for each one obtained by
consensus. The evaluation of empirical papers showed a median of 8
and a mode of 9. Appendix B. presents quality assessment results.

3.3. Study classification

For the classification of the papers we considered: the year and
source of publication, software engineering topics addressed according
to the SWEBOK [30] and the research approach according to the
Wieringa classification [33]. Statements about interactions between
sustainability aspects and software product quality were extracted from
primary papers, and the verbatim text (whenever possible) was used to

Table 1
Keywords used in this SMS.

Keywords Synonyms

Sustainability Sustainab* OR green OR "energy efficient" OR ecolog*
Application

software
Software

Software product
quality

Quality OR goal OR nfr OR nonfunctional OR non-
functional OR "quality requirement" OR "quality
requirements" OR *9126 OR *25010 OR standard OR
usability OR security OR compatibility OR functionality
OR efficiency OR portability OR maintainability OR
reliability

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

111

http://www.scopus.com/
http://www.scopus.com/
http://dl.acm.org/dl.cfm
http://dl.acm.org/dl.cfm
http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/Xplore/home.jsp
http://apps.webofknowledge.com/

fill in a data extraction form. These propositions, named text segments in
this paper, are the key evidence that all primary papers mention, at
least, an interaction. Details about classifying selected papers by con-
sidering text segments are presented in Appendix D.

4. Results of the SMS: interactions between software quality and
environmental sustainability

This section presents the results of the SMS, following the same
order as the general research questions and sub-questions (Section 3).

4.1. Profile of selected papers

4.1.1. Trends in publication (GQ1-RQ1)
The year 2016 provides a partial set of primary papers, since the

automatic search was carried out until Dec 28, 2016. As can be ob-
served in Fig. 1, there is little work about interactions before 2011.
Indeed, the first two papers focus on some ways of improving energy
efficiency and its relation with usability [41] or resource utilization
[42]. The third paper addresses the identification of requirements,
considering sustainability goals in a project for the planning of a con-
ference meeting [43]. The majority of papers, it is clear, were published
after 2010 and especially in the last three years (50 papers). This trend
shows that this topic is currently highly relevant for researchers from
the software engineering field.

With regard to publication venues, this SMS focused on identifying
peer-reviewed papers published in journals, conferences, workshops
and research book chapters [34]. More than half of the papers (37 out
of 66) were published in conferences, while 12 were published in
workshops. The papers were published in both general software en-
gineering conferences (e.g. ICSE, ESEM, SAC, among others) and spe-
cialized meetings for sustainable software development (e.g. GREENS,
RE4SuSy). 21%% of papers (14 out of 66) were published in journals,
two of them in a specific journal for sustainable development: Sus-
tainable Computing: Informatics and Systems. Furthermore, three pa-
pers were published in the book Green in Software Engineering [44].

In relation to specific venues, there is a trend in publishing in a
specific sustainable development workshop, such as GREENS and
RE4SuSy, since they cover around 14%% of published papers. Other
general conferences, such as ICSE, SAC, ESEM, to name just some, are
also making an effort to meet the need to address sustainable devel-
opment in the context of software engineering. Concerning journals, the
special issue about sustainable software published by IEEE Software,
and the specific journal Sustainable Computing: Informatics and Systems
can be highlighted.

4.1.2. Software engineering topics (GQ1-RQ2)
The classification of the primary papers was based on the SWEBOK,

in which software quality is a theme addressed in several knowledge
areas [30]. Fig. 2 shows that only six areas (out of the 15 knowledge

areas of the SWEBOK) have been addressed. The two most studied to-
pics are software quality (22 papers) and software requirements (16
papers). Other software engineering topics tackled are software design,
software construction, software maintenance and software engineering
process.

With regard to software quality knowledge area, papers were clas-
sified by some subtopics derived from their content. The two main to-
pics addressed are developing energy profilers to support measurement
(68%%, 15 papers) and developing quality models (23%%, 5 papers).
Other topics are prioritization of environmental aspects in the context
of product quality characteristics and defect management.

4.1.3. Research type (GQ1-RQ3)
Fig. 3 shows the classification of the primary papers according to

their research type, by following the guidelines in [33] and [34].
As can be observed in Fig. 3, the majority of primary papers belong

to the validation research category (30 papers). This can be explained
by the fact that researchers are exploring the suitability of using tra-
ditional software engineering methods and techniques in the context of
developing sustainable software. The most frequent empirical methods
applied in validation research category were: experiments (23 papers)
and case studies (6 papers).

In the evaluation research category four papers were included.
Koçak et al. [45] interviewed software practitioners to establish a
priority between a subset of ISO/IEC 25010 quality characteristics and
environmental sustainability. Moura et al. [46] explored the way en-
ergy efficiency is currently addressed by software developers using
commits in the GitHub repository. Manotas et al. [47] carried out a
survey to understand the way software practitioners address energy
issues during the software development life cycle. Relying on mining
data, Chowdhury and Hindle [48] analyzed the extent to which soft-
ware projects are energy-aware. In the case of reporting experiences,
the six papers focus on software requirements. The main topic studied
was the identification of sustainability goals and the way they interact
between them, as well as with other system goals.

In the category of philosophical papers, ten papers address both the
characterizing of sustainability as a quality characteristic which can be
included in ISO/IEC 25010, and the related measures needed to

Fig. 1. Publication trends by year.

0 5 10 15 20 25

So�ware requirements

So�ware construc�on

So�ware design

So�ware engineering process

So�ware maintenance

So�ware quality

So�ware Engineering topics

Fig. 2. Software engineering topics addressed.

0 5 10 15 20 25 30 35

Experience report

Valida�on research

Solu�on proposal

Philosophical paper

Evalua�on research

Research type

Fig. 3. Research type addressed by primary papers.

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

112

evaluate it [12,49,50,105]. On the other hand, the main topic of the 16
solution-proposal papers is to measure energy consumption by in-
troducing new tools and frameworks to monitor power consumption of
application code [42,51–57]. Other proposals discuss methods to
prioritize sustainability aspects and the way of adapting requirements
modeling methods to include sustainability goals.

The bubble chart (Fig. 4) shows the software engineering areas
addressed by the type of research conducted. As may be observed, va-
lidation papers have been published in the areas of design (8), con-
struction (7) and software quality (9). In the first of these areas (de-
sign), we found several authors exploring design patterns from the
perspective of optimizing energy efficiency. In the construction
knowledge area, several authors reported that practices to improve
performance can also improve energy efficiency, although there is a
moderate correlation between them. In the last of the areas (software
quality), papers focus on measurement approaches. Furthermore, the
two most common software engineering areas are software require-
ments and software quality, which have also been addressed by con-
ducting different types of research.

Meanwhile, as shown in Fig. 5, several research methods have been
applied in the quest to understand the interactions between sustain-
ability aspects and software quality. The majority of primary papers
conducted experiments (24). In addition, 15 case studies were found,
which include both exploratory case study and industrial case study.
Furthermore, two surveys were also reported. However, nine papers did
not present any empirical support.

4.1.4. What approaches are used to describe software quality in the context
of interactions with sustainability aspects? (GQ1-RQ4)

The classification of papers was carried out by considering the main
approach to address software product quality. 48 primary papers (73%
%) mention, at least, a quality characteristic (or subcharacteristic) that
is included in ISO/IEC 25010. The quality in use category (4%%) in-
cludes three papers whose main goal is to enhance energy efficiency
while maintaining the user experience. Since authors do not address
specific dimensions of the user experience, it was considered

appropriate to use the quality in use model, since it can support the
evaluation of interactions between users and systems [13]. The process
view quality category (15 papers, 23%%) addresses the way in which
defects, errors or bugs can have an impact on energy efficiency. In
addition, it includes approaches for modeling interactions between
software quality characteristics and sustainability goals.

Around 24%% of the papers are aware of a product quality model,
such as [13] or ISO/IEC 9126, for example. Quality models serve two
main purposes: to identify the quality characteristics which would
support sustainability goals, or to adapt the quality model by adding a
set of quality characteristics that support sustainability.

From each primary paper, text segments that mention the type of
relationship between a software quality characteristic and a sustain-
ability aspect were extracted. 106 distinct text segments were identi-
fied, since several papers considered interactions in multiple parts
within the paper. From 44 papers (67%%), one text segment was ex-
tracted, while remaining papers contributed from two to five segments.
Text segments that mentioned more than one quality characteristic
were replicated to count the frequency of each quality characteristic.
Fig. 6 sets out the quality characteristics addressed considering the ISO/
IEC 25010 product quality model. Performance efficiency is the one
studied most (43 records). Functional suitability, usability and main-
tainability are also studied in the context of achieving sustainability
goals.

Energy efficiency is the main focus among selected papers, since 42
out of the 66 papers include terms such as “energy efficiency”, “energy
consumption” or “power consumption”. The remaining papers present
terms such as “sustainability”, “sustainability requirements”, “sustain-
ability goals”, “green software” or “sustainable software”. Out of the
whole set of primary papers, 33%% (22 papers) of them use some type
of hardware to measure power consumption, while 27%% (18 papers)
of papers use only software or an API to estimate the energy con-
sumption of a software application.

4.2. Interactions between environmental sustainability goals and product
quality characteristics

4.2.1. Methodological support for managing interactions between software
quality and sustainability goals (GQ2-RQ1)

In order to characterize the interactions between sustainability as-
pects and software product quality characteristics, literature about in-
teractions between requirements was reviewed [14,58,59,60] since the
ISO/IEC 25010 product quality model is closely related to the specifi-
cation of quality requirements [13]. Interaction is a type of dependency
between two or more requirements that should be satisfied simulta-
neously in a software product [14]. In dependency models, satisfies is a
specific kind of constraint relationship that is labeled as a conflicting
relationship [60] and it defines the following situations: Two require-
ments cannot be met simultaneously in a software product, or in-
creasing the satisfaction of one requirement has a negative influence in

2

7

1

8

12

4 9

4

8

1

5

3

6

2

1

1

1

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Research type conducted in SE areas

Evalua�on

Valida�on

Proposal

Philosophical

Experience

Opinion

Requirements Design Construc�on Maintenance Process Quality

Fig. 4. Bubble chart relating software engineering knowledge areas to the type of re-
search conducted.

0 5 10 15 20 25 30

Case study
Example

Experiment
Exploratory case study

Extracted from case study
Extracted from survey

Industrial case study
N/A

Proof of concept
Survey

Research method

Fig. 5. Research methods used in primary papers.

0 5 10 15 20 25 30 35 40 45

Compa�bility

Func�onal suitability

Maintainability

Performance efficiency

Portability

Reliability

Security

Usability

Quality characteris�cs addressed

Fig. 6. Product quality characteristics addressed in the set of primary papers.

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

113

satisfying another requirement [58]. Although interactions can be de-
scribed at requirements level, they can arise in all stages of software life
cycle [31,32,61]. The way interactions are uncovered thus depends on
the stage of the software life cycle and on other project settings, such as
the goals and expectations of different stakeholders.

The way interactions are described in primary papers of this SMS
were classified as general interaction, directed interaction and tech-
nology-mediated interaction. General interaction addresses statements of
relationship or influence between a quality characteristic and sustain-
ability aspects. This category includes the effort of incorporating sus-
tainability as a quality characteristic into a quality model, measurement
of sustainability aspects based on software attributes considered into a
quality model, prioritization of quality characteristics and sustainability
aspects, as well as a modeling of the influence quality characteristics
and sustainability aspects have on each other. From a general interac-
tion, a directed or mediated interaction can be derived. Directed inter-
action describes either a positive or negative interaction between a
quality characteristic and a sustainability aspect. The direction of the
interaction can also be established in a lower abstraction level, since
quality characteristics, as well as sustainability aspects, can be de-
scribed by more specific terms. Finally, mediated interaction describes
the influence of a technology (e.g. programming language, software
library, among others) both on quality characteristics and on sustain-
ability aspects. When the paper addresses only a specific item of tech-
nology, such as an energy-aware library, the influence can either
‘contribute’ (positive) or ‘hinder’ (negative) the achievement of both
statements simultaneously. In addition, if a paper describes a set of
items belonging to the same technology category (e.g. several pro-
gramming languages) the label ‘affect’ is used, since results sections
provided in papers allow the items to be sorted considering energy
consumption.

Software engineering process to Software quality describe ap-
proaches for managing interactions categorized by the SWEBOK
knowledge areas, while Software product quality view (Section 4.2.2)
presents interactions classified by ISO/IEC 25010 product quality
characteristics.

Software engineering process: There is a philosophical paper whose
main purpose is to introduce three sustainability processes into a soft-
ware organization [62]. In addition, these authors consider sustain-
ability as a new product quality characteristic that has a relationship
with usability, functionality and reusability. On the other hand, Man-
otas et al. [47] reported that it is frequent to make tradeoffs between
energy usage and performance of a software feature. Achieving a bal-
ance between energy usage and other software goals is considered in
design, construction and testing stages [47].

Software maintenance: The software maintenance knowledge area is
addressed by eight papers. Since refactoring techniques have been used
to increase software maintainability, these papers explore their poten-
tial support to improve (or maintain the same level) software sustain-
ability. The evidence about using refactoring patterns has not been
clear until now, since researchers have reported both a positive [63]
and a negative [64] influence on energy efficiency. Other researchers
have found similar results when evaluating energy consumption of re-
factoring techniques [65] [66]. Refactoring techniques have also been
reported in templates addressing energy code smells [67]. Jagroep et al.
[68], for their part, reported the effect of software change when an
encryption component is added to a commercial software product. Fi-
nally, some researchers provided arguments to describe the effect that
sustainability and maintainability subcharacteristics have on each other
[69] while others considered some reengineering techniques to improve
energy efficiency for mobile applications [70].

Software construction: The software construction knowledge area is
addressed by nine primary papers. Two evaluation research papers
studied software developers’ energy aware messages committed in
GitHub archives [46] [48]. Moura et al. found that developers are
trading software energy consumption for other software attributes [46].

In the process quality view, authors found that ill-chosen energy saving
techniques and libraries can produce incorrect results. The other paper
found that energy-related code changes tend to be larger than bug fixes
[48]. In addition, energy bugs, errors in systems that unexpectedly in-
crease energy consumption, also show negative interactions between
energy efficiency and software process quality. Finally, enhancing the
user experience requires more power consumption [46]; there is thus a
negative interaction between quality in use and energy efficiency.

A solution research paper proposes an aspect-oriented programming
approach and a tool for profiling dynamically-consumed energy at
software component level [56]. Remaining papers are validation re-
search papers that reported on experiments to show the impact on
energy efficiency of technologies used to optimize computing resources
and time performance. In particular, they addressed the effect on en-
ergy consumption of different languages [71], validating practices for
energy efficiency in the MySQL server [72], several sorting algorithms
[73], coding practices [74–76], compilation options and implemented
data structures [71]. Some authors argued that the duration of the task
explains more than 89%% of energy consumption when sorting algo-
rithms were tested in mobile devices [73]. Moreover, practices use to
enhance software performance have also been studied in the context of
energy efficiency [75]. Indeed, a memoization framework can reduce
both energy consumption (average saving of 86%%) and time perfor-
mance (average saving of 87%%) [76].

Software design: The experience report provided by Ardito et al. [6]
included a conceptual framework that considers both power con-
sumption profiles of computer resources and design strategies as a basis
for improving energy efficiency while developing software. The eight
validation research papers addressed topics such as: design patterns
[77,78]; the impact of web servers on web application energy con-
sumption [79]; about energy consumption, the impact of frameworks
on access to data in web-based applications [80], how to develop GUIs
in the quest to reduce energy consumption [41,81]; software archi-
tecture and program features that influence energy consumption [82];
and use of some general techniques for computing efficiency, data ef-
ficiency and context-awareness as to improve energy efficiency [83].

Software requirements: Nine papers address software requirements in
a process perspective by using terms such as goals, nonfunctional re-
quirements, quality requirements, software qualities and indicators
[10,20,43,84–89]. Modeling languages can thus support the identifi-
cation of sustainability goals and means that contribute positively or
negatively within a specific system goal [84,86,88,89]. Considering the
quality in use viewpoint, how the research on users can identify a set of
principles for designing software systems that enhance the user ex-
perience to motivate people to make behavioral changes is described in
[90] and [91]. Furthermore, other research [92] showed the user's role
in energy consumption when he/she selected an application for ex-
ecuting a task.

In order to achieve sustainability goals, the software product should
take also into account other nonfunctional requirements such as us-
ability by means of requirements elicitation techniques [93] or usability
testing [94]. Indeed, if the requirements of a user-friendly GUI are not
met, software may not achieve sustainability goals [85]. Finally, Sa-
putri and Lee [95] proposed a framework for addressing sustainability
requirements by considering both conflicting goals and a technique for
prioritizing requirements.

Software quality: In this category, there is an evaluation paper whose
aim is to understand the relationship between software quality and
energy efficiency [45]. This paper reported that energy efficiency has a
negative relationship with functional suitability and performance effi-
ciency. On the other hand, reliability, security and usability are per-
ceived to have a potential positive interaction with energy efficiency.

Other proposals discussed the way in which sustainability can be
incorporated into the ISO/IEC 25010 quality model [12,49,105] or
measures for a greenability quality model [50]. In the category of va-
lidation research papers, Beghoura et al. [96] proposed an extension to

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

114

ISO/IEC 25010 to include green efficiency quality characteristics. In
addition, Ouhbi et al. [97] provide a survey of blood donation mobile
applications that considers both sustainability dimensions and product
quality attributes.

A framework entropy indicator to evaluate the impact of libraries
and development frameworks on energy consumption is proposed in
[5]. Authors found that using frameworks and external libraries has a
positive effect on developing small and medium software applications,
while they have negative impact on the development of large applica-
tions [5]. On the other hand, other researchers attempt to identify
software metrics that can be used as indicators to measure power
consumption in mobile applications [57]. With respect to indicators,
other research [98] proposed a GreenUp indicator to evaluate energy
efficiency.

An energy profiler can help in the analysis of legacy systems to
identify highly energy-consuming components [51], can assist in the
identification of abnormal energy consumption in mobile applications
[52], and could support developers in profiling their code for energy
consumption [53]. In addition, it is possible to profile energy usage of
several computing resources in the attempt to guide design choices
[42]. Profiling energy tools can also take into account usability [55]
and security [99]. Moreover, Chang et al. [100] proposed an analysis
methodology to establish indicators for resource utilization.

Another topic studied is the effect of software change on energy
consumption. With reference to system calls, a study determines the
energy consumption profile of open source software (OSS) relying on
changes among different versions [54]. Ahmed et al. [101] found that
there is a negative correlation between the number of bugs fixed and
the amount of power the OSS application consumes. Moreover, system
call profiles for Android applications are used to estimate energy con-
sumption [102]. Finally, there are proposals to prioritize quality and
sustainability characteristics [103] and to develop carbon footprint
calculators [104].

4.2.2. Interactions between software quality and sustainability aspects
(GQ2-RQ2)

The following paragraphs describe interactions found in the selected
papers for the process quality view, the product quality view and the
quality in use view.

Software process quality view: Defects counting is a common way to
measure software quality from the process perspective [37] and it is
also studied with regard to energy consumption. As a matter of fact,
Zhang and Hindle [54] reported that bugs in software versions can
make their power use seem extremely high or extremely low.
Chowdhury and Hindle [48] found that energy-related code changes
tend to be larger than fixing a bug, and that energy concerns can affect
several modules in a software product. In addition, Aggarwal et al.
[102] found that some versions of a software product have different
energy consumption patterns derived from errors caused by two in-
complete refactoring efforts; these errors can cause an increase in
software energy consumption. Furthermore, Ahmed et al. [101] found a
negative correlation between the number of bugs fixed and amount of
power OSS applications consumes. Moreover, Moura et al. [46] re-
ported energy bugs, such as keeping the system in the wrong c-state, or
continuously updating a UI component when the screen is turned off,
can increase energy consumption.

Within the process quality view, there also exist analysis activities
related to identifying interactions between software requirements or
user goals [23]. Several pieces of research have extended the goal-
modeling approach to identify potential conflicts between sustainability
and software goals [84]. Interactions can be discovered in the goals
hierarchy in terms of conflicts, constraints or support between goals. In
addition, an example of eliciting sustainability requirements for a
medication adherence system is included in [85]. Furthermore, a matrix
to document conflicting goals among sustainability requirements ex-
plicitly, along with a method to prioritize goals is proposed in [95]. We

could also point to the relevance of the identification of sustainability
indicators in a software system, as proposed by Rodriguez and Pen-
zenstadler [87].

Goal modeling is also applied in sustainable requirements en-
gineering by considering modeling approaches such as KAOS and i*.
Bomfim et al. [86] reported an experience of developing a procurement
system using the KAOS framework. The goal models can be analyzed by
means of positive or negative contributions between goals, including
sustainability goals. Cabot et al. [43] used the i* framework to model
sustainability factors and goals. The interdependencies among goals can
have either a positive or a negative effect on goals.

Based on an architecture evaluation model, Lago et al. [20] pro-
posed a sustainability framework to capture sustainability aspects based
on sustainability dimensions. The model allows the identification of
influences, support or conflict, between different parameters of sus-
tainability dimensions. Since addressing environmental sustainability
requires a balance between sustainability dimensions, the resolution of
a conflict can be handled by prioritization techniques and negotiation
among stakeholders [10].

Software product quality view: The interaction between product
quality characteristics and sustainability aspects is based on the quality
characteristics described in the product quality model of the ISO/IEC
25010. In order to understand the extent of a directed interaction,
particular subcharacteristics (which belong to the product quality
model mentioned) or particular concerns of a sustainability aspect al-
luded to, are examined. Table 2 presents a summary of directed inter-
actions, while Table 3 shows the main technologies explored in medi-
ated interactions. The bold type in the tables indicates that the paper is
either a validation or evaluation research paper. As such, they are
empirical [34]. For each quality characteristic, this section describes
interactions with sustainability aspects in the following order: general
interaction, directed interactions and mediated interactions.

Functional suitability: General interaction. Calero et al. [12] propose a
Bayesian Network model (BNM) which considers that functional ap-
propriateness is related to the user's environmental perception. This
latter concept refers to the user's perception about the effect of software
in the environment. It is a subcharacteristic of greenability in use. Other
proposal investigates the interdependencies between product quality
characteristics and environmental sustainability criteria, seeking to
conduct a trade-off analysis [103]. The researchers found that func-
tionality is the third most important quality criterion where its accuracy
subcharacteristic represents 44%% [103]. Finally, Cordero et al. [51]
reported the relationship between executed functionality and energy
consumption.

Directed interaction. As far as the direction of an interaction is con-
cerned, papers show both positive and negative categories. On the one
hand, Zhang et al. [92] compared energy consumption of applications
with equivalent functionality for completing the same task. They found
that software versions with limited functionality consume less energy.
Indeed, authors noted that “more functionality often leads to increased
energy consumption”. Similarly, Lami and Buglione [62] defined that a
sustainable product should “meet current needs of required function-
alities without compromising the ability to meet future needs” (p. 56)
and should implement the required functionalities in order to reduce
maintenance tasks [62]. For their part, Koçak et al. [45] found that
functional suitability has a negative correlation with energy efficiency:
“an increase in the functional suitability […] leads to a decrease in the
energy efficiency”. However, resource efficiency has a positive corre-
lation with functional suitability [45]. This result therefore points out
that functional suitability has both positive and negative interaction
with sustainability criteria.

Mediated interaction. Two approaches were found when assessing
technology's contribution to sustainability aspects considering func-
tional suitability. One approach studied the influence that different
application categories have on energy efficiency. Categorization of
applications relies on the functions provided by the software under

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

115

study. The second approach focused on functional correctness, where
the purpose is to show that changes in the software code for improving
energy consumption do not produce incorrect outcomes.

Considering the functions implemented in software, Capra et al. [5]
found that applications that present higher degrees of functional com-
plexity (e.g. ERPs, games, editors) consume more energy than simple
software such as calendars. They concluded that the “functional com-
plexity of an application, and in particular the extent to which its ex-
ecution is processor intensive, negatively impacts its energy efficiency”.
Similarly, Ouhbi et al. [97] found that the type of functions deployed in
blood donation applications influence the energy consumption. In ad-
dition, Chang et al. [100] found that the way with which functions are
implemented affects energy consumption, as does the expected beha-
vior.

When assessing correctness of software outputs, Noureddine and
Rajan [77] compared software outputs before and after applying design
patterns in order to verify that their modifications do not change the
functionality of code. Based on mining data in Github server, Moura
et al. [46] found that ill-chosen energy-saving techniques could affect
correctness of software.

Compatibility: General interaction. In relation to the sub-
characteristics which belong both to compatibility and greenability in
use characteristics, in the BNM [12] the interoperability is related to the
user's environmental perception. In addition, Koçak et al. [103] found
that interoperability has a very low priority among quality character-
istics when environmental sustainability is considered.

Portability: General interaction. Based on the subcharacteristics of
portability and greenability in use, adaptability and replaceability are
related to the user's environmental perception [12]. Furthermore, the
generic sustainable software model proposes that portability promotes
software perdurability [105].

Maintainability: General interaction. Three papers discuss the poten-
tial relationship between greenability and maintainability. In a BNM
[12], modularity, reusability and analyzability are related to the user's
environmental perception. Moraga et al. [50] identified a set of mea-
sures that can be related to the perdurability subcharacteristic, which is
defined in terms of modifiability, adaptability and reusability. In ad-
dition, Amri and Bellamine Ben Saoud [105] proposed that maintain-
ability should contribute towards software perdurability.

Directed interaction. A paper argued that maintainability can have
both a positive and a negative influence on greenability [69]. Mod-
ularity is considered to increase power consumption due to the fact that
fine-grained software architecture increases the number of messages
sent between objects. On the other hand, a modular software archi-
tecture increases software modifiability. Furthermore, reusability is

also considered to contribute towards green software [69] or a sus-
tainable product [62].

Mediated interaction. On the one hand, a solution proposal paper
reviewed several software reengineering techniques used to improve
software maintainability, and proposed them to enhance efficiency of
software energy [70]. On the other hand, empirical data provided by
the authors in [64,66] showed that refactoring techniques applied to
increase software maintainability can consume more energy in the
updated software.

Reliability: General interaction. In a BNM [12], reliability is related to
the user's environmental perception subcharacteristic. Furthermore,
Koçak et al. [103] found that reliability is the most important quality
characteristic when considering the environmental sustainability cri-
teria.

Directed interaction. On exploring the correlation between software
quality and energy efficiency, it is reported that reliability has the
highest positive effect on energy efficiency [45]. In modeling sustain-
able systems, Lago et al. [20] showed that the system requires a relia-
bility parameter.

Security: General interaction. Security is not considered to influence
greenability in use [12]. In addition, security might have very low re-
levance when environmental sustainability criteria are taken into ac-
count [103].

Directed interaction. In the exploratory survey conducted by Koçak
et al. [45], the authors found that security has a significantly positive
influence on energy efficiency. The authors related security to relia-
bility, in the sense that enhancing both may help to reduce faults and
defects. However, another researcher argued that security and sus-
tainably may have a negative interaction. Penzenstadler [93] noted that
“the absolute availability of information would make sustainability
easier in many domains, and that is in conflict with privacy”. Privacy is
related to security through the confidentiality subcharacteristic.

Mediated interaction. Three papers describe the software effect on
the relationship between security and energy efficiency. Sabharwal
et al. [83] compared two windows systems running in laptops based on
the duration of battery life. They found that running security applica-
tions on the IT build degrades battery life roughly 14%% more than in a
system without security application. Jagroep et al. [68] found that in-
corporating an encryption component into a commercial software
product increases energy consumption. In the third paper, Ambrosio
et al. [99] reported that the filtering app under study contributes po-
sitively to both energy efficiency and security.

Usability: General interaction. Calero et al. [12] identified two sub-
characteristics of usability, appropriateness recognizability and learn-
ability, which are related to the user's environmental protection

Table 2
Directed interactions between software quality and sustainability aspects in the product quality perspective.

Quality concepts Sustainability aspects Directed interaction Papers (non-empirical /
empirical)

Functional suitability (functional appropriateness,
functional completeness)

Energy efficiency, resource efficiencya Positive [92,62] [45]a

Functional suitability Energy efficiency Negative [45]
Maintainability (modularity) Power consumption, greenability Negative, positive [69]
Maintainability (reusability) Greenability Positive [69,62]
Maintainability (modificability) Greenability Positive [69]
Reliability Energy efficiency, environmental sustainability Positive [20,45]
Security (confidentiality) Sustainability Negative [93]
Security Energy efficiency Positive [45]
Usability Perdurability, sustainability, environmental

sustainability (resource efficiency)
Positive [62,105,85] [45]

Performance efficiency Energy efficiencyb (power consumption) Positive [6,56] [45,98,95,72]
Performance efficiency Energy efficiency Negative [45]
Performance efficiency (time behavior) Energy efficiencyb (energy usage) Positive [53,52,70] [65,83]

aResource efficiency is a quality subcharacteristic within the environmental factor in Koçak et al. [45].
bindicates that text segments refer to using or consuming either energy or power. These were changed to energy efficiency in order to be consistent with remaining papers.

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

116

subcharacteristic. Moreover, Amri and
Bellamine Ben Saoud [105] proposed that usability is related to

perdurability.
Directed interaction. Lami and Buglione [62] noted that sustainable

software should consider its usability, since it can contribute to ex-
tending the product life cycle beyond what was initially expected. In
addition, an easy-to-use graphical interface contributes to achieving
sustainability goals [85]. As a result of an exploratory survey, Koçak
et al. [45] found that usability has the highest positive impact on re-
source optimization, a criterion belonging to environmental sustain-
ability.

Mediated interaction. Several researchers indicated that software
usability contributes to sustainability goals. Usability testing is re-
commended and applied to identify sustainability requirements and to
support the usage of sustainable software (e.g. carbon footprint calcu-
lators) [94,104]. In addition, Jolinar, a profiling energy tool, is pre-
sented as an easy-to-use application for both software developers and
users [55]. Furthermore, other researchers have proposed techniques to
enhance a user interface design that contributes positively to energy
efficiency without affecting software usability [41].

Performance efficiency: General interaction. In the BNM [12], perfor-
mance efficiency is related to the user's environmental perception. In
addition, a main finding in [103] was that energy impact and resource
usage, both belonging to environment criteria, are related to time be-
havior. Similarly, the generic sustainability software model in [105]
considers that the software energy consumption can be controlled by
runtime efficiency and usage of system resources. Looking for making
greenability characteristics operative, Moraga and Bertoa [50] found
that an important number of measures are related to resource optimi-
zation. These measures evaluate the consumption and optimization of
different resources that a software product uses. In other quality model
[49], resource saving, as a green software subcharacteristic, is related
to resource utilization. Moreover, green efficiency is considered as a
quality characteristic by Beghoura et al. [96] and it is composed of
subcharacteristics related to performance efficiency. Furthermore,
Koçak et al. [45] found that performance efficiency has a significant
energy-related impact. A similar idea was considered by Cordero et al.
[51], to correlate an application's execution time and its energy con-
sumption.

Directed interaction. Ardito et al. [6] indicated that resource usage
metrics are key predictors in building resource-based power consump-
tion models. Despite the fact that the most important resource to be
monitored is the CPU, others resources, such as memory usage or input/
output operations, have a significant correlation with power con-
sumption. In contrast, Koçak et al. [45] found that an increase in per-
formance efficiency leads to a decrease in energy efficiency. Manotas
et al. [47] reported that it is difficult to address the tradeoffs between
performance and energy when software is in the development stage.

Considering software time behavior, researchers reported correla-
tions between execution time and energy consumption [95]. Studying
several optimization techniques, Sabharwal et al. [83] noted that “the
faster we can complete the workload and get the computer back to idle,
the more energy we can save.” Jelschen et al. [70] argued that execu-
tion time is strongly related to energy consumption in the context of the
use of dynamic analysis and refactoring techniques for optimizing the
energy profile of mobile applications. However, others researchers look
at a weak correlation between execution time and energy consumption.
Sahin et al. [65] concluded that factors beyond execution time influ-
ence energy usage [65] while other authors concluded that either the
correlation is not direct [53] or there are other factors to be taken into
account [52].

The type of resource used and the way they are managed affect
energy consumption. Jelshen et al. [70] reported that performance re-
quires more energy when powerful devices are used (e.g. energy de-
mands of a laptop vs. mobile phone). Using a tool to automatically
profile energy consumption of applications can increase performanceTa

bl
e
3

M
ed

ia
te
d
in
te
ra
ct
io
ns

be
tw

ee
n
so
ft
w
ar
e
qu

al
it
y
an

d
su
st
ai
na

bi
lit
y
as
pe

ct
s
in

th
e
pr
od

uc
t
qu

al
it
y
pe

rs
pe

ct
iv
e.

Q
ua

lit
y
co

nc
ep

ts
Su

st
ai
na

bi
lit
y
as
pe

ct
s

Te
ch

no
lo
gy

M
ed

ia
te
d

in
te
ra
ct
io
n

Pa
pe

rs
(n
on

-
em

pi
ri
ca
l/
em

pi
ri
ca

l)

Fu
nc

ti
on

al
su
it
ab

ili
ty

R
es
ou

rc
e
co

ns
um

pt
io
n,

en
er
gy

co
ns
um

pt
io
n

Th
e
w
ay

fu
nc

ti
on

s
ar
e
im

pl
em

en
te
d,

fu
nc

ti
on

al
co

m
pl
ex
it
y,

ty
pe

of
fu
nc

ti
on

al
it
y
off

er
ed

by
a

ca
te
go

ry
of

so
ft
w
ar
e
pr
od

uc
t

A
ff
ec
ts

[1
00

,5
],
[9

7]

Fu
nc

ti
on

al
su
it
ab

ili
ty

En
er
gy

-s
av

in
g

Il
l-c

ho
se
n
en

er
gy

-s
av

in
g
lib

ra
ri
es

H
in
de

rs
[4

6]
Fu

nc
ti
on

al
su
it
ab

ili
ty

En
er
gy

-s
av

in
g

Tr
an

sf
or
m
at
io
n
of

de
si
gn

pa
tt
er
ns

C
on

tr
ib
ut
es

[7
7]

M
ai
nt
ai
na

bi
lit
y

En
er
gy

effi
ci
en

cy
Pr
og

ra
m

an
al
ys
is

te
ch

ni
qu

es
C
on

tr
ib
ut
es

[7
0]

M
ai
nt
ai
na

bi
lit
y

En
er
gy

effi
ci
en

cy
R
ef
ac
to
ri
ng

te
ch

ni
qu

es
H
in
de

rs
[6

6,
64

]
Se

cu
ri
ty

Ba
tt
er
y
lif
e,

en
er
gy

effi
ci
en

cy
R
un

ni
ng

se
cu

ri
ty

ap
pl
ic
at
io
ns
,I
nc

or
po

ra
ti
ng

an
en

cr
yp

ti
on

el
em

en
t
in

so
ft
w
ar
e
ar
ch

it
ec
tu
re

H
in
de

rs
[8

3,
68

]
Se

cu
ri
ty

Ba
tt
er
y
co

ns
um

pt
io
n

Fi
lt
er
in
g
ad

w
ar
e
in

m
ob

ile
sy
st
em

s
C
on

tr
ib
ut
es

[9
9]

U
sa
bi
lit
y

Su
st
ai
na

bi
lit
y
re
qu

ir
em

en
ts
,
ca
rb
on

fo
ot
-

pr
in
t,
en

er
gy

effi
ci
en

cy
Im

pr
ov

e
us
ab

ili
ty

of
:r
ec
om

m
en

de
r
sy
st
em

,c
ar
bo

n
fo
ot
pr
in
t
ca
lc
ul
at
or
.
U
si
ng

U
I-
ba

se
d
de

si
gn

te
ch

ni
qu

es
C
on

tr
ib
ut
es

[9
4,
55

]
[1

04
,4
0]

Pe
rf
or
m
an

ce
effi

ci
en

cy
En

er
gy

effi
ci
en

cy
Pr
ac
ti
ce
s
fo
r
en

ha
nc

in
g
pe

rf
or
m
an

ce
of

m
ob

ile
de

vi
ce
s,

co
m
pr
es
si
ng

fi
le

st
re
am

s,
m
em

oi
za
ti
on

te
ch

ni
qu

es
,fi

lt
er
in
g
ad

s
in

m
ob

ile
w
eb

-b
as
ed

sy
st
em

s,
en

er
gy

-a
w
ar
e
lib

ra
ri
es

C
on

tr
ib
ut
es

[4
2]
,[

76
,9
9,
63

]

Pe
rf
or
m
an

ce
effi

ci
en

cy
En

er
gy

effi
ci
en

cy
D
ec
or
at
or

de
si
gn

pa
tt
er
n,

tr
ad

eo
ff
s
in

al
ls
ta
ge

s
of

so
ft
w
ar
e
de

ve
lo
pm

en
t,
en

er
gy

is
su
es

ar
e
di
ffi
cu

lt
to

di
sc
ov

er
H
in
de

rs
[4

6,
78

]

Pe
rf
or
m
an

ce
effi

ci
en

cy
En

er
gy

effi
ci
en

cy
Pr
og

ra
m
m
in
g
la
ng

ua
ge

s,
ru
nt
im

e
sc
op

e
of

an
dr
oi
d-
ba

se
d
sy
st
em

s,
vi
de

o
qu

al
it
y
le
ve

l,
so
rt
in
g

al
go

ri
th
m
s,

vi
de

o
co

m
pr
es
si
on

st
ra
te
gi
es
,u

si
ng

lib
ra
ri
es

an
d
fr
am

ew
or
ks
,c

om
pi
le
r
op

ti
m
iz
at
io
n

fl
ag

s,
da

ta
st
ru
ct
ur
es
,w

eb
se
rv
er
,w

eb
ap

pl
ic
at
io
n
fe
at
ur
es
,P

H
P
fr
am

ew
or
ks
,p

ro
gr
am

si
ze
,u

si
ng

ca
ch

e

A
ff
ec
ts

[6
7]
,[

75
,7
4,
96

,1
00

,5
,7
3,
71

,7
9,
80

,8
2]

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

117

by reducing resources used and can maintain similar energy con-
sumption of manual approaches [56]. Other researchers reported that
by improving the number of operations executed by code and opti-
mizing the usage of main memory and cache, energy can be saved [98].
Moreover, there is a correlation between resource usage and energy
consumption that can lead to trade-offs between energy efficiency and
performance [72].

Mediated interaction. In the experiments to characterize power con-
sumption profiles when design patterns are used, Sahin et al. [78] found
that decorator pattern flexibility requires more work at runtime, which
can explain the amounts of energy use. They concluded that design
patterns should be studied in the context of design and implementation
decisions to evaluate their impact on energy efficiency.

Kansal and Zhao [42] reported that using a compressed file stream
saves energy, and enhances performance [42]. Agosta et al. [76] found
that by applying a memoization-based framework they can improve
both average energy saving (86%%) and average performance (87%%).
In [99], filtering techniques of a privacy-enhancing component for
Android systems were explored. As a result, time savings were obtained,
which ranged from 5%% to 28%% on the web sites assessed, while the
energy consumption savings ranged from 3%% to 29%%. Furthermore,
it is reported an improvement in the energy usage by around 3%% by
using a framework for an energy-aware library for Java Collections API
[63].

Other topic addressed is the effect on energy consumption of a set of
technologies of the same kind (e.g. programming languages [74]). Ra-
shid et al. [73], found that both the algorithms and the language sig-
nificantly affect the total energy consumption. Li and Halfond [75]
reported that practices recommended to enhance the performance of
mobile applications also improve energy efficiency from 10%% to 30%
%. Furthermore, Beghoura et al. [96] reported that the greenest

efficient sorting algorithms are the merge sort and the quick sort. Ab-
dulsalam et al. [71] contributed by studying the effect of languages
such as C, C++++, Java and Python and compiler flag options in the
efficiency of three programs. They reported that programming lan-
guages, compiler options and data structures affect energy use [71].
Rajan et al. [82] found that several practices, used to improve perfor-
mance, affect energy consumption. However, software practitioners
consider that compromises between energy efficiency and performance,
along with other requirements, should be done in several stages of the
software development life cycle, and that to make informed decisions
they need more information [47]. In addition, some refactoring tech-
niques optimize energy efficiency as well as performance [67].

Other specific technologies have been studied. Beghoura et al. [96]
reported that high-quality videos consume more energy than a stan-
dard-definition quality of a video. Moreover, Chang et al. [100] de-
scribed that differences in energy consumption in systems such as
Vimeo and YouTube can be explained by the larger workload in data
receptions, as well as by higher variances in CPU interruptions derived
from the adoption of different video compression strategies. Further-
more, Manotas et al. [79] found that energy consumed by a web ap-
plication depends on the web server and the web application features.
Moreover, high-performance production web servers may be detri-
mental as far as energy use is concerned [79]. Finally, Procaccianti
et al. [80] found that using object-relational mapping frameworks have
an impact on energy consumption.

Quality in use view: Developing sustainability-aware applications
that engage users in sustainable behavior relies on understanding users’
perceptions and values about sustainability. Based in a market research
[90], Marcus et al. proposed a set of principles for designing sustainable
applications that are more engaging. The experience of making a re-
wards program based on sustainability actions incorporate user

Table 4
Findings summary.

Main findings Relevant information

GQ1-RQ1. Publication trends • In 2006, we found the first reference of interactions between energy efficiency and usability in the
mobile app domain

• More than 75%% of primary papers published in the last three years • Specialized conferences: GREENS, RE4SuSy. SE conferences: ICSE, ESEM, SAC
• In the last years specialized conferences about sustainability and

sustainability tracks in SE conferences have arisen
GQ1-RQ2. Software engineering areas • The majority of papers were classified in the knowledge areas of software quality and software

requirements. The other areas addressed are: software design, software construction, software
maintenance, and the software engineering process

• Software quality: 22 papers • Only 6 areas (out of 15) of SWEBOK were addressed
• Software requirements: 16 papers
GQ1-RQ3. Research type • More than 50%% of primary papers describe an empirical study
• Evaluation research papers: 4 • Trend: exploring current technologies about the extent to which they can address sustainability

aspects
• Validation research papers: 30 • There is a need for empirical studies in industrial settings
GQ1-RQ4. Software quality approaches • All ISO/IEC 25010 product quality characteristics addressed
• 73%% of papers in product quality view • Performance efficiency studied by experimental design
• Performance efficiency is the quality characteristic studied most • Improvements to quality models uses ISO/IEC 25010
• 24%% of papers are aware of ISO/IEC 25010 • 33%% of papers reported a hardware-based instrumentation to measure power consumption
GQ2-RQ1. Approaches for dealing with interactions • Goal modeling techniques allow both positive or negative contribution of subgoals to be analyzed
• Modeling goals methods can be used to elicit and analyze sustainability

goals
• Approaches to profile energy in software applications are based on hardware or software
instrumentation
• Incorporating sustainability as a quality characteristic into ISO/IEC 25010

• Energy profiles for software applications can monitor energy efficiency • Software design patterns and refactoring techniques need to be studied in depth, to discover the way
they affect energy consumption

• Quality models incorporate a sustainability characteristic • Recommended practices to enhance performance can also optimize energy efficiency
GQ2-RQ2. Direction of an interaction • Enhancing software process quality has a potentially positive interaction with energy efficiency
• Fixing defects contributes to optimizing of energy efficiency • Functional suitability, performance efficiency and maintainability can participate in both positive

and negative interactions with sustainability
• Usability and reliability have a potential positive interaction with

sustainability
• Security has a potential negative interaction with sustainability.

• Performance efficiency can have both positive and negative
interactions

• Reliability has a potentially positive interaction with sustainability

• Usability can have a positive interaction with sustainability when addressing indirect sustainability
impacts. Direct sustainability impact can have a negative interaction with usability

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

118

experience principles and several software components such as a suc-
cess tracker and a game [91].

Moura et al. [46] found that better responsiveness on mobile de-
vices needs more power consumption, due to an on-demand sampling
rate. In addition, Yu et al. [81] proposed an energy-efficient engine, E3,
to adjust the frame rate when scrolling is used. They reported up to 35%
% energy saving using the framework, and found positive user experi-
ences when applications such as Facebook, Google Maps, or browsers
are used. Another proposal focused on defining the greenability in use
characteristic [12], which is composed of three subcharacteristics: ef-
ficiency optimization, user's environmental perception, and minimiza-
tion of environmental effects.

5. Summary and implications of the SMS

Table 4 presents a brief response to research questions described in
Section 3. Based on the quality in life cycle model (ISO/IEC 25010),
Fig. 7 is an overview of the answer for the question GQ2-RQ2 inter-
actions between software quality and sustainability aspects considering
the three quality views: process quality, product quality and quality in
use. Concerning process quality, defects in software can increase the
energy consumption of software. On the other hand, interactions in the
quality in use view shows that improving user satisfaction with soft-
ware can promote user participation in sustainable behavior. However,
high responsiveness in touch events may increase energy consumption.

The main topic of this study is the product quality view using ISO/
IEC 25010 (Tables 2 and 3). Only a few papers investigated the func-
tionality of application software and its energy consumption. The more
functions a software product provides, the greater its energy con-
sumption [5,92,100]. This statement is related to functional suitability
through the functional appropriateness subcharacteristic [12]. Both
positive and negative correlations are reported between functional
suitability and an environmental criterion [45]. Since the correlations
were obtained by an exploratory survey, these findings need to be
verified. Further work is thus needed to define the way functional
suitability should be measured in experiments, to determine whether
functional suitability promotes energy efficiency or not.

Compatibility and portability are addressed as general interactions.
Reliability is considered as having a relationship with sustainability
[12,103] and this relationship might be positive [20,45]. However,
there is a need for experimental studies to confirm the relationships.

Security is poorly addressed in the selected papers. With regard to
directed interaction, data from a regression model showed a positive
interaction between security and energy efficiency [45], but the paper
lacks a discussion of this correlation. Apart from that, privacy might have
a negative influence on sustainability [93]. Some papers supporting this
idea showed that adding security components into a system could in-
crease energy consumption [68,83,99]. Hence, the main concerns about
security are to investigate both to what extent security components are
energy efficient and whether an application software has implemented
appropriate security mechanisms for it to meet its purpose.

Another positive relationship is that existing between usability and
sustainability goals. In this case, it is necessary to consider how the set
of usability subcharacteristics behave, taking into account different
sustainability aspects (e.g. energy consumption). In relation to main-
tainability, there is a common belief that it might influence the sus-
tainability of application software positively [62,70]. In contrast, a few
papers with experimental data showed that some refactoring techniques
have a negative impact on energy efficiency due to the fact that new
methods and classes incorporated into the updated software might in-
crease the number of messages between objects (increased modularity)
[64,66]. A limitation of these experiments is that they need to address
larger software systems, as well as to determine accurate and complete
execution scenarios [64]. Different contextual settings should be in-
vestigated to understand the extent to which the technology used to
increase maintainability has a negative impact on energy efficiency.
Furthermore, the relationship between sustainability and maintain-
ability should be studied in software, considering both a static view
(design) and a dynamic view (running).

As Table 2 shows, a number of statements about interactions do not
rely on sound empirical studies, and several quality concepts used in
papers are not defined. This means that selected papers discuss potential
interactions between software quality characteristics and sustainability
aspects. Although a quality assessment was conducted on empirical
papers, the majority of them are validation studies that need to be
evaluated in an industrial context. The lack of empirical evidence in
industrial settings does not hinder these results from being used in
software projects, since perceptual attributes are important for estab-
lishing a basis for general theory [106]. In addition, the lack of ap-
propriate methods to detect conflicting interactions leads to the fact
that an engineer “relies (almost) entirely on the intuition of experienced
modelers” [61]; expert judgment is one of the most common

Fig. 7. Potential interactions between software quality
and sustainability aspects (adapted from ISO 25010).

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

119

approaches for reconciling conflicts that arise in product software
quality [32].

5.1. Research implications

Although 66 papers addressing interactions between software pro-
duct quality and sustainability were selected, the analysis of these
shows that research is in an exploratory stage. 34 papers were classified
as empirical papers, but only four address practices in industrial set-
tings. Two research strategies can therefore be derived. First, validating
that current software development technologies to enhance a particular
software product quality attribute also contribute to optimizing energy
efficiency. Second, evaluating approaches both for improving sustain-
ability aspects and for enhancing product quality in industrial settings.
The research community effort has focused on the relationship between
performance efficiency and energy efficiency, with performance effi-
ciency being the one most related to sustainability aspects. Tables 2 and
3 provide an initial map of practices studied and quality characteristics
addressed. These findings can become a starting point for a deeper
analysis of either other software development practices or evaluation of
practices in distinct contextual settings.

Reducing energy consumption is a main goal in developing sus-
tainable software [17,22]. In the context of green in software, this goal
should be addressed during the whole software life cycle [21]. More-
over, the resources consumed during the software development stage
need to be considered from the sustainable development perspective, as
do the resources required for software operation. Optimizing software
considering sustainability aspects offers opportunities to identify other
sustainability indicators [71]. There is thus a need to develop methods
that allow software developers to elicit, model, analyze, and negotiate
sustainability goals and requirements.

There are two main approaches to developing energy profiles of
software applications: hardware-based and software-based. A main goal
in the development of energy profiles for software is to establish a re-
lationship between the behavior of software components and energy
consumption measures. These models are at an exploratory stage and
need additional validation in industrial settings. Furthermore, there is a
need to compare methods for developing energy profiles to assure the
consistency of results among them. For instance, Capra et al. [5] and
Zhang et al. [92] assessed energy consumption of different software
applications, categorizing them by the extent to which different appli-
cations have similar functions. However, there are differences in
hardware/software platforms, measurement devices, and procedures
used for gauging energy consumption, data acquisition and data ana-
lysis. There is thus an obvious need for information with which to make
decisions about the selection of the best energy profile method for
monitoring specific software categories.

An important topic addressed in primary papers is improving quality
models to include sustainability as a quality characteristic into a quality
model [13]. The majority of proposals consider adding a new quality
characteristic called greenability or sustainability. Some proposals have
decomposed the sustainability characteristic into subcharacteristics.
However, a comparison of these models should be carried out in order to
identify the main aspects that make it possible to consider sustainability
as a general quality characteristic. For it to be a quality characteristic,
development of empirical models, including appropriate measures is re-
quired. Currently there are few conceptual quality models, so there is
further research work to be done on this topic.

The relationship between performance efficiency and energy effi-
ciency is what is reported most frequently in the set of primary papers.
The definition of performance efficiency relies on the requirements
stated for a software system about the response time required to per-
form its functions, the amount and type of resources used when soft-
ware performs its functions, and the maximum limits of product para-
meters [13]. Without considering the requirements specified for the
software under study since they are not included in primary papers,

enhancing performance efficiency has a positive interaction with en-
ergy efficiency. Other quality characteristics such as functional suit-
ability, reliability, maintainability, security and usability, have also
been explored in relation to sustainability aspects. In order to synthe-
size evidence of empirical studies, appropriate definition of quality
characteristics should be provided.

Finally, some quality characteristics showed conflicting interactions
with sustainability aspects. A way to resolve conflicting interactions is
to refine the definition of the concepts under study [14]. It is thus
suggested that in their research reports researchers should include a
definition both of the quality terms used and the sustainability aspects
addressed. Furthermore, it is important to study contextual factors that
can have an impact on the interactions between two conflicting goals or
requirements. Describing contextual data can support the identification
of factors that need to be studied to explain why the conclusions
reached by the different research papers are not consistent with each
other.

5.2. Practical implications

Software developers need practical guidance to support sustain-
ability during software development [23,107]. Although there are
scarce results in industrial settings, we can rely on the expert opinion of
researchers as a basis for providing some general suggestions. They
must be adapted considering the particular settings of the project or
organization.

1. In a process view, improving software quality by means of fixing
defects can contribute to the enhancement of energy efficiency.
Studies with different versions of the same open source software
have showed that defects have an impact on energy consumption.
Fixing defects can reduce energy consumption, and defect man-
agement practices also contribute to reducing energy consumption.

2. Goal modeling methods, such as KAOS or i*, can support the elici-
tation of sustainability goals. These models also allow software de-
velopers to identify sustainability goals and to relate them with
business or system goals. Subgoals and the means to achieve a given
goal can be evaluated to determine if they have a positive or ne-
gative contribution.

3. Using practices to improve performance efficiency can have a po-
sitive impact on energy optimization. From the analysis of primary
papers, we found that performance and energy efficiency have a
positive interaction. This means that among other things, software
developers need to evaluate the feasibility of using practices such as
memoization, prevent the sending of small HTTP packets, or mini-
mize the execution in the background of irrelevant applications.
Performance-enhancing practices should be considered as a first
approach to optimizing energy efficiency when software developers
lack appropriate and validated practices to deal with sustainability
aspects. Table 3 provides a list of the technologies assessed with
regard to energy efficiency.

4. Usability can contribute positively to sustainability when software
developers aim to promote the use of a sustainable product among
users. In addition, enhanced software usability allows users carry
out tasks more efficiently. That being the case, if a software project
needs to address sustainability aspects in order to promote a sus-
tainable behavior (indirect impact on sustainability), enhancing
usability is a first step to achieving sustainability goals. However,
some usability requirements can increase energy consumption when
they are implemented. In that sense they can hinder the achieve-
ment of energy efficiency goals (direct impact on sustainability).

5. Addressing some of these quality characteristics implies writing
more code. But more code might consume more resources and more
energy. Software developers should therefore identify the purpose
and goals of the software under development and the extent to
which sustainability should be addressed. As Sierszecki et al. [108]

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

120

pointed out in the domain of embedded software: “safety, reliability
and availability are more important to drive operation than power
consumption is.”

6. Study limitations

In a systematic review, there are two main threats that have an
impact on the reliability of the SMS: the selection bias and the data
extraction bias [8,40]. Considering the mitigation of selection bias, a
protocol was developed to establish the goal of the research and the
main research questions. The protocol identified the search terms and
included a previous literature review about sustainability and software
engineering.

The main purpose of this SMS is to provide a snapshot of the way
software quality interacts with sustainability aspects, and to see the
main trending topics researchers are working on. There is no need for
an exhaustive search process to identify all the papers about the topic
under review. Indeed the search procedure should be auditable, but not
necessarily complete [109]. An automatic search process was carried
out in four databases recommended for the software engineering field
[110]. It should be added that this SMS includes both empirical and
non-empirical studies [34] published in conference papers, book
chapters derived from research results, and journal papers [34].

Although the main focus of this SMS is on product quality based on
the ISO/IEC 25010 product quality model, the search string included
terms to explore quality in the perspectives of process quality and
quality in use (e.g. quality, model, *25010, *9126), but a few papers
were classified in the “quality in use” category. The result of this SMS
can be considered consistent with identifying measures for quality in
use [22].

Data extraction bias was mitigated by developing a data extraction
template. The template fields were filled with verbatim data (whenever
possible) extracted from selected papers. In the case of text segments
that address interactions specifically, the data extracted included the
page on which the text segment appears.

Classification of papers, on the other hand, was based on models
accepted by the software engineering community such as research-type
papers, SWEBOK knowledge areas, and product quality characteristics
[33,13,30]. Specific topics about software quality views and interac-
tions were appropriately documented in the respective sections (e.g.
4.2). Classification of specific interactions was difficult, given the di-
versity of ways of expressing them. The interaction model used in this
paper was derived from the analysis of selected papers. However, re-
lationships found in a text segment could belong to different interaction
categories. The way this issue was mitigated was to consider practices
(or techniques) assessed and the generality of the claim. The energy
profile proposals that supported an interaction direction were con-
sidered in the directed interaction category. However, this interaction
model needs to be improved. Other papers (e.g. [47,95]) included text
segments of different quality views. The text segments were classified in
the appropriate quality view. Given that 67%% of papers were classi-
fied with only one text segment, it is possible that other papers may
have addressed other quality views.

This SMS focused on identifying interactions or trade-offs between
software quality and sustainability aspects. Although energy efficiency
is the main concept studied under environmental sustainability, goals
belonging to other sustainability dimensions are also addressed in
proposals to elicit and analyze sustainability requirements. In addition,
sustainability in software applications is tackled throughout the stages
of the software development life cycle. This is consistent with the work

of Bozzelli et al. [29], which found that application software is the
context reported most in sustainability measures and that the measures
can be used in different stages of the software development life cycle.
Finally, the approaches used to manage interactions between software
quality and sustainability concerns are consistent with the classification
of software quality trade-offs [32].

7. Conclusions

This paper presents the result of conducting an SMS about the in-
teractions between software quality and sustainability aspects in the
context of application software during its development stage. The set of
primary papers allowed us to answer the research questions and to
identify approaches for managing interactions between software quality
and sustainability aspects, as well as to see potential interactions be-
tween these.

The results highlight that researchers are actively working in the
study of the interactions between sustainability and software quality, as
it is observable in the notably increasing trend of publications. An
important research approach is to explore the extent to which the
current software development technology can be applied to save power
consumption during software development. However, these technolo-
gies are still not fully used in industrial settings. Performance efficiency
is the product quality characteristic reported most in validation re-
search papers, but there is an important set of quality characteristics
and subcharacteristics that need to be investigated in the quest to un-
derstand whether interactions with sustainability aspects arise and to
identify relevant contextual factors that can trigger a conflicting in-
teraction. Under these conditions, it is concluded that the research topic
is at an exploratory stage.

From a practitioner's point of view, the SMS contributes by sum-
marizing the influence of sustainability aspects on specific quality
characteristics. Hence, they may use this information to make decisions
about the way environmental sustainability goals can be included in a
software project. In addition, the SMS provides a set of practices to deal
with software product quality and sustainability goals that practitioners
may explore when they are seeking to improve their software process.
From a researcher's perspective, the output of this work provides a
classification of the areas addressed, the empirical methods used, as
well as the way software quality characteristics have been studied. The
SMS provides an initial identification of papers so that further research
can be started on topics barely addressed as yet.

Further work is needed to characterize interactions found in pri-
mary papers. Some of these are based on expert judgment that must be
corroborated through the conducting of empirical research. Interactions
found by experiments need to be assessed in different contextual set-
tings in order to understand the extent to which they might arise when
variations in contextual settings exist. A model to manage interactions
and factors influencing these is needed if appropriate recommendations
are to be provided to software developers. There is a need for methods
and practices to develop green software without hindering software
quality that supports all software life cycle stages. Indeed, empirical
studies should be conducted in industrial settings so that the re-
commended practices can be evaluated.

Acknowledgments

This work has been funded by the project: GINSENG (Ministerio de
Economía y Competitividad y Fondo Europeo de Desarrollo Regional
FEDER, TIN2015-70259-C2-1-R).

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

121

Appendix A

The set of primary papers.

ID Reference Year Paper type SE area Research type Domain

abdulsalam2015 [98] 2015 Conference Software quality
(measurement)

Validation
research

Four algorithms

abdusalam2014 [71] 2014 Conference Software construction Validation
research

3 apps.: FFT, Linked list and Quicksort

agosta2012 [76] 2012 Journal Software construction Validation
research

JavaGrande benchmark suite

ahmed2014 [101] 2014 Conference Software quality
(defect management)

Validation
research

Open source software

ambrosio2014 [99] 2014 Conference Software quality
(measurement)

Validation
research

Mobile apps

amri2014 [105] 2014 Conference Software quality
(quality model)

Philosophical
paper

No described

ardito2015 [6] 2015 Journal Software design Experience
report

Examples in tables: mobile

arggarwal2014 [102] 2014 Conference Software quality
(measurement)

Validation
research

Mobile apps

beghoura2015 [96] 2015 Journal Software quality
(quality model)

Validation
research

Mobile apps

bomfim2014 [86] 2014 Conference Software requirements Experience
report

Energy sector in procurement systems

cabot2009 [43] 2009 Conference Software requirements Solution
proposal

Conference planning

calero2014 [12] 2014 Workshop Software quality
(quality model)

Philosophical
paper

No described

capra2012 [5] 2012 Journal Software quality
(measurement)

Validation
research

63 open source applications

chang2014 [100] 2014 Conference Software quality
(measurement)

Validation
research

Mobile apps: Youtube, Vimeo, Facebook, Twitter

chinenyeze2016 [56] 2016 Conference Software construction Solution
proposal

Sorting apps

chowdhury2016 [48] 2016 Conference Software construction Evaluation
research

Mobile apps, embedded apps, desktop

cordero2015 [51] 2015 Conference Software quality
(measurement)

Solution
proposal

Java software

corral2014 [74] 2014 Conference Software construction Validation
research

Rely on implementation of five algorithms

couto2014 [52] 2014 Conference Software quality
(measurement)

Solution
proposal

Open source Android application

field2014 [53] 2014 Conference Software quality
(measurement)

Solution
proposal

Sorting algorithms running in a laptop

garciaRod2015 [69] 2015 Book
chapter

Software maintenance Philosophical
paper

Two open source software

gordieiev2015 [49] 2015 Workshop Software quality
(quality model)

Philosophical
paper

Not described

gottschalk2016 [67] 2016 Conference Software maintenance Solution
proposal

Mobile android-based apps

jagroep2016 [68] 2016 Conference Software maintenance Validation
research

Commercial software product

jelschen2012 [70] 2012 Conference Software maintenance Philosophical
paper

Not described

kansal2008 [42] 2008 Journal Software quality
(measurement)

Solution
proposal

Windows-based software

keong2015 [57] 2015 Conference Software quality
(measurement)

Solution
proposal

Mobile devices

kozac2014 [103] 2014 Workshop Software quality
(prioritization)

Solution
proposal

Not described

kozac2015 [45] 2015 Workshop Software quality
(quality model)

Evaluation
research

Not described

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

122

lago2015 [20] 2015 Journal Software requirements Solution
proposal

Systems: paper-mill control and car-sharing

lami2012 [62] 2012 Conference Software engineering
process

Philosophical
paper

Not described

li2014 [75] 2014 Workshop Software construction Validation
research

Mobile apps

mahaux2011 [88] 2011 Conference Software requirements Experience
report

Planning events system/business

manotas2013 [79] 2013 Workshop Software design Validation
research

Web application: Tracks

manotas2014 [63] 2014 Conference Software maintenance Validation
research

Java applications that use the Collections API.

manotas2016 [47] 2016 Conference Software engineering
process

Evaluation
research

Mobile, traditional, embedded and datacenter apps

marcus2011 [90] 2011 Conference Software requirements Experience
report

Not described

marcus2014 [91] 2014 Conference Software requirements Experience
report

Web-based software tool and mobile apps

moraga2015 [50] 2015 Book
chapter

Software quality
(measurement)

Philosophical
paper

Not described

moura2015 [46] 2015 Conference Software construction Evaluation
research

Open source software

noureddine2015 [77] 2015 Conference Software design Validation
research

Small programs gathered from Github repository
(C++++, Java) Domain no specified)

noureddine2016 [55] 2016 Conference Software quality
(measurement)

Solution
proposal

Application number Pi

ouhbi2015 [97] 2015 Conference Software quality
(measurement)

Validation
research

Mobile devices apps

park2014 [66] 2014 Conference Software maintenance Validation
research

63 C++++ programs

penzen2013 [23] 2013 Workshop Software requirements Solution
proposal

Car-sharing system

penzen2014 [10] 2014 Journal Software requirements Philosophical
paper

Not described

penzen2015 [85] 2015 Workshop Software requirements Validation
research

Health domain

penzen2015A [93] 2015 Conference Software requirements Philosophical
paper

Web-based guide

penzend2015From [84] 2015 Book
chapter

Software requirements Experience
report

Car-sharing system

perez2014 [64] 2014 Journal Software maintenance Validation
research

Open source systems

procaccianti2016 [80] 2016 Conference Software design Validation
research

Web applications

procaccianti2016b [72] 2016 Journal Software construction Validation
research

Web applications

rahman2011 [104] 2011 Journal Software quality
(measurement)

Validation
research

Application in .Net framework and mobile device

rajan2016 [82] 2016 Conference Software design Validation
research

Desktop programs

rashid2015 [73] 2015 Conference Software construction Validation
research

Mobile app

raturi2014 [89] 2014 Conference Software requirements Solution
proposal

Joulery energy awareness tool, hypothetical Hotel
Resource Tracking System

rodriguez2013 [87] 2013 Workshop Software requirements Solution
proposal

Car-sharing system

roher2013 [94] 2013 Workshop Software requirements Philosophical
paper

Not described

sabharwal2013 [83] 2013 Journal Software design Validation
research

Mobile devices based on Windows

sahin2012 [78] 2012 Workshop Software design Validation
research

Open source applications

sahin2014 [65] 2014 Conference Software maintenance Validation
research

Java application (several domains)

saputri2016 [95] 2016 Conference Software requirements Validation
research

Climate monitoring system

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

123

vallerio2006 [41] 2006 Journal Software design Validation
research

Mobile applications

yu2015 [81] 2015 Journal Software design Validation
research

Mobile apps

zhang2014 [92] 2014 Journal Software requirements Solution
proposal

Text editing apps., email clients, and music players

zhangHindle2014 [54] 2014 Conference Software quality
(measurement)

Solution
proposal

Open source software

Appendix B

Quality assessment of empirical papers.

ID Aim Context Research
design

Sampling Control
group

Data
collection

Data
analysis

Findings Value of
research

Total

abdulsalam2015 1 1 1 1 1 1 1 1 1 9
abdusalam2014 1 1 1 1 1 1 1 1 1 9
agosta2012 1 1 1 1 1 1 1 1 1 9
ahmed2014 1 1 1 1 0 0.5 0.5 1 1 7
ambrosio2014 1 1 1 1 1 1 1 1 1 9
arggarwal2014 1 1 1 0.5 0 0.5 1 1 1 7
beghoura2015 1 1 1 1 0 1 1 1 1 8
capra2012 1 1 1 1 0 1 1 1 1 8
chang2014 1 1 1 0.5 0 0.5 1 1 1 7
chowdhury2016 1 1 1 1 1 1 1 1 1 9
corral2014 1 1 1 0.5 0 0.5 0.5 1 1 6.5
jagroep2016 1 1 1 1 1 1 1 1 1 9
kozac2015 1 1 1 0.5 0 1 1 1 1 7.5
li2014 1 1 1 1 0 0.5 1 1 1 7.5
manotas2013 1 1 1 1 0 1 1 1 1 8
manotas2014 1 1 1 1 1 1 1 1 1 9
manotas2016 1 1 1 1 0 1 1 1 1 8
moura2015 1 1 1 1 0 1 1 1 1 8
noureddine2015 1 1 1 0.5 1 0.5 1 1 1 8
ouhbi2015 1 1 1 1 0 0.5 0.5 1 1 7
park2014 1 1 1 1 1 0.5 0.5 1 1 8
penzen2015 1 1 1 1 0 0.5 0.5 1 1 7
perez2014 1 1 1 1 1 1 1 1 1 9
procaccianti2016 1 1 1 1 0 1 1 1 1 8
procaccianti2016b 1 1 1 1 1 1 1 1 1 9
rahman2011 1 1 1 1 0 1 1 1 1 8
rajan2016 1 1 1 1 1 1 1 1 1 9
rashid2015 1 1 1 1 1 1 1 1 1 9
sabharwal2013 1 1 1 1 1 0.5 1 1 1 8.5
sahin2012 1 1 1 1 1 1 1 1 1 9
sahin2014 1 1 1 1 1 1 1 1 1 9
saputri2016 1 1 0 0 0 0 0.5 1 1 4.5
vallerio2006 1 1 1 1 1 1 1 1 1 9
yu2015 1 1 1 1 1 1 1 1 1 9
Value (1) 34 34 33 28 18 23 28 34 34
Value (0.5) 0 0 0 5 0 10 6 0 0
Value (0) 0 0 1 1 15 1 0 0 0

Appendix C

Extracted parts of the SMS review protocol.

C.1. Search string

The selected databases in this SMS belongs to the set of databases suggested to conduct SMS on SE discipline with automated search [110]. In
addition, [34] suggest selecting IEEE and ACM as well as two indexing databases (e.g. Scopus). The search string (Table 1) used in each database and
its corresponding number of retrieved records is set out in Table 5.

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

124

The search string was tested on Scopus database (http://www.scopus.com/) in order to verify at what extent we can retrieve the articles we are
looking for (the procedure is detailed in Section 3.1). After examining the selected primary papers, we performed the automated searches on the
databases of ACM digital library (http://dl.acm.org/dl.cfm), IEEE Xplore (http://ieeexplore.ieee.org/Xplore/home.jsp) and Web of Science (http://
apps.webofknowledge.com/).

C.2. Selection criteria

Selection criteria are presented in Section 3.2 Study selection of the main paper.

C.3. Procedure for selecting primary papers

This SMS is carried out by the researchers included in Table 6.
The selection criteria were applied by the first author when reviewing the records retrieved from each database. First of all, the first author made

the selection of the primary papers by applying the exclusion and inclusion criteria. This selection was made by reading only the title and the
abstract. In parallel, the second author replicated the selection process and obtained a set of primary papers. The selected papers were retrieved in
order to read them and verify that they met selection criteria. The two sets of primary papers were checked by all authors; discrepancies were
discussed in order to determine whether it was appropriate to include the different papers or not, and the list was obtained.

C.4. Quality assessment

In an SMS, quality assessment of primary papers is not required [34] because an SMS can include papers without validation. However, in order to
determine the extent to which rigor and relevance is reported in empirical papers selected in this SMS, we adapted a quality assessment instrument
(Table 7).

The instrument is based on Dyba and Dingsoyr [40] and it is adapted to specific topics addressed in this SMS. The nine questions can be rated as
included (1), partially included (0.5) and not included (0). Each question provides criteria to assign an included or partially included rating. Each
primary paper was evaluated by the authors, and the final value assigned to each question was obtained by consensus.

Table 5
Operationalization of search string in four databases. Automatic search conducted at December 28, 2016.

Database Search Retrieved records

ACM (469 in the time span (2000-
2016)

record Abstract: ((sustainab* OR green OR "energy efficient" OR ecolog*) AND (software) AND (quality OR goal OR nfr
OR nonfunctional OR non-functional OR "quality requirement" OR "quality requirements" OR *9126 OR *25010 OR
standard OR usability OR security OR compatibility OR functionality OR efficiency OR portability OR maintainability OR
reliability))

469

IEEE 971
First search string: 435 (("Abstract":sustainab* OR "Abstract":green OR "Abstract":"energy efficient" OR "Abstract":ecolog*) AND

"Abstract":software AND ("Abstract":quality OR "Abstract":goal OR "Abstract":nfr OR "Abstract":nonfunctional OR
"Abstract":non-functional OR "Abstract":"quality requirement" OR "Abstract":"quality requirements" OR "Abstract":*9126
OR "Abstract":*25010 OR "Abstract":standard)) and refined by Year: 1999–2016

Second search string: 536 (("Abstract":sustainab* OR "Abstract":green OR "Abstract":"energy efficient" OR "Abstract":ecology*) AND
"Abstract":software AND ("Abstract":usability OR "Abstract":security OR "Abstract":compatibility OR
"Abstract":functionality OR "Abstract":efficiency OR "Abstract":portability OR "Abstract":maintainability OR
"Abstract":reliability)) and refined by Year: 2000–2016

Web of Science Tema: ((sustainab* OR green OR "energy efficient" OR ecolog*) AND (software) AND (quality OR goal OR nfr OR
nonfunctional OR non-functional OR "quality requirement" OR "quality requirements" OR *9126 OR *25010 OR standard
OR usability OR security OR compatibility OR functionality OR efficiency OR portability OR maintainability OR
reliability)) Refinado por: Áreas de investigación: (COMPUTER SCIENCE) Período de tiempo: 2000–2016

932

Scopus ABS (sustainab* OR green OR "energy efficient" OR ecolog*) AND ABS (software) AND ABS ((quality OR goal OR nfr OR
nonfunctional OR non-functional OR "quality requirement" OR "quality requirements" OR *9126 OR *25010 OR
standard) OR (usability OR security OR compatibility OR functionality OR efficiency OR portability OR maintainability
OR reliability)) AND PUBYEAR > 1999 AND PUBYEAR < 2017 AND (LIMIT-TO (SUBJAREA, "COMP"))

1601

Total retrieved from 4 DB 3973

Table 6
Researchers conducting this SMS.

Author-ID Name Area of expertise relevant for this SMS

1 G. A. García-
Mireles

Software product quality, interactions between
product quality characteristics

2 M. A. Moraga Product quality models, green software measures
3 F. García Software process models, product quality,

measurement
4 C. Calero Web-based quality models, product quality, green

quality models, product quality measurement
5 M. Piattini Systems and software quality

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

125

http://www.scopus.com/
http://dl.acm.org/dl.cfm
http://ieeexplore.ieee.org/Xplore/home.jsp
http://apps.webofknowledge.com/
http://apps.webofknowledge.com/

C.5. Data extraction and classification

A template was designed for extracting data from primary papers (Table 8). Each template field is related to the research questions.
To classify papers, we used several software engineering classifications such as knowledge areas of the SWEBOK [30], research type categories

[33] and product quality characteristics (ISO/IEC 25010)[13]. However, specific interactions reported in papers need an appropriate classification.

Table 7
Quality assessment instrument.

Number Question Included
1

Partially included
0.5

Not included
0

1 Screening questions
Was there a clear statement of the aims of the research?
• Article explicitly describes research aims or hypothesis (0.5)
• Rationale for undertaking the study (0.5)
• Article explicitly describes both (rationale and research aim) (1.0)

2 Screening questions
Was there an adequate description of the context in which the research was carried out?
• The technology under development/study (mobile apps, web app, among others) was identified(0.5)
• The hardware/software platforms where software is tested/running were described (0.5)
• The technology under study, along with the platform and approach for measurement sustainability aspects or energy
consumption were described (1.0)

3 Research design
Was the research design appropriate for addressing the aims of the research?
• Paper justifies the main approach (qualitative methods, quantitative methods,) and a specific method for sampling, data
collection and data analysis. (0.5)
• Paper justified at least two methods used in research (e.g. one for data collection and one for data analysis). (1.0)

4 Sampling
Was the recruitment strategy appropriate to the aims of the research?
• Researchers explained how the participants or cases were identified and selected (0.5)
• Cases were identified and selected, and were defined or described precisely (1.0)

5 Control group
Was there a control group with which to compare treatments?
• Researches described how controls were selected (0.5)
• Researchers described how the controls were selected and used to contrast results (1.0)

6 Data collection
Was the data collected in a way that addressed the research issue?
• All measures were clearly defined (e.g. units and counting rules) (0.5)
• Description of data-collecting method (e.g. focus group, energy profiler, etc.) (0.5)
• Both of these measures were clearly defined and description of data collection methods existed (1.0)

7 Data analysis
Was the data analysis sufficiently rigorous?
• Only a superficial description of analysis method (i.e., only mention or refer to a method) was given (0.5)
• In-depth description of the analysis process was given, and there were sufficient data to support the findings (1.0)

8 Findings
Was there a clear statement of findings?
• Interactions were derived from related literature or discussion, or were not explicitly described but inferred (0.5)
• Findings about interactions were explicitly described and derived by empirical result (e.g. magnitude of effect) (1.0)

9 Value of the research
Was the study of value for research or practice?
• Value of research was poorly addressed (only one contribution was mentioned, without discussing how it was related to
existing knowledge or understanding) (0.5)
• Researchers discussed the contribution the study makes to existing knowledge or understanding (1.0)

Table 8
Template for extracting data.

Data item Value RQ

Study ID Last name of first author++publication year
Article title Name of the article
Authors name List of authors
Year of publication Calendar year assigned by the publisher. Some conference proceedings are published in the year following the conference date. RQ1
Publication type Peer reviewed articles (journal articles, conference and workshop proceedings, chapters in research books)

Excluded: literature reviews and systematic reviews, since these were searched previously to determine the necessity of this work.
RQ1

Venue Name of the publication venue RQ1
Study goal Extract either the study aim or goal
Area in SE Knowledge area in SWEBOK. We are considering the essential areas of SE such as: software requirements, software design, software

construction, software testing, software maintenance, software configuration management, software engineering management,
software engineering process, software engineering models and methods, software quality, software engineering professional practice,
software engineering economics.
Excluded: computing foundations, mathematical foundations, and engineering foundations

RQ2

Research type Use [33] categories plus the rules recommended by [34]. Wieringa categories are: evaluation research, solution proposal, validation
research, philosophical papers, opinion papers, experience papers.

RQ3

(continued on next page)

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

126

Appendix D

Text segments used to classify interactions (partial list).

PaperID Description Type
(ISO25010)

Direction Interaction
type

amri2014 Quality attributes such as maintainability, portability and usability promote
software perdurability. P. 233

Maintainability Relates General

calero2014 From Table 1. All product quality characteristics, except security, have a
relationship with sub-characteristics from greenability in use. (p. 7)

Maintainability Relates General

garciaRod2015 Modularity is likely to be related to greenability for two different reasons. p. 212 Maintainability Negative Directed
garciaRod2015 "Highly reusable assets are prone to be optimized, as is their greenability". P212 Maintainability Positive Directed
garciaRod2015 If an asset is easy to modify, it is likely to keep (and not worsen) its greenability. p.

212
Maintainability Positive Directed

jelshen2012 Code smell detection [36], the identification of patterns known or suspected to be
detrimental to software quality (especially maintainability). In the same way,
energy-wasting code patterns can be defined. This is tightly linked to refactoring. P.
356. Software reengineering aims to improve software quality. …
maintainability… the same techniques are useful for driving software systems
towards energy efficiency. P.356

Maintainability Contributes Mediated

lami2012 Sustainability would be more comprehensive than solely ‘maintainability,’ since it
can be seen in the middle of the product quality model and quality in use model (p.
56.) Furthermore, a sustainable product should have a lower impact when
introducing changes (reusability) or should improve usability that can make the
product lifecycle longer (p. 57)

Maintainability Positive Directed

moraga2016 Majority of measures are related to energy efficiency (30 of the 81 measures for
product), an important subset of measures are related to resource optimization
(23%%) and perdurability (28%%) (p. 268)

Maintainability Relates General

park2014 Basically, code refactoring techniques have the intention of improving
maintainability. … However, these techniques can give negative effects in power
consumption. ... But exceptions to them also exist. P. 720

Maintainability Hinders Mediated

perez2014 A better architecture in terms of maintainability can certainly be worse in terms of
power consumption. P. 52

Maintainability Hinders Mediated

abdulsalam2015 “By improving the code's number of operations and the optimum usage of main
memory and cache there is more room for energy savings.” p. 2 “Defining the
Greenup, Powerup and Speedup metrics to explain the correlations of energy,
power and performance when optimizing software.” p. 2

Performance
efficiency

Positive Directed

abdusalam2014 “For both C and C++++ code [of FFT], using optimization flags not only
improves performance, but also reduces energy consumption.” P. 3 Fast Fourier
Transform, Linked List Insertion/Deletion and Quicksort.

Performance
efficiency

Affects Mediated

References

[1] M. Dick, S. Naumann, Enhancing software engineering processes towards sus-
tainable software product design, Proceedings of EnviroInfo Conference, 2010, pp.
706–715.

[2] L.M. Hilty, P. Arnfalk, L. Erdmann, J. Goodman, M. Lehmann, P.A. Wäger, The
relevance of information and communication technologies for environmental
sustainability – a prospective simulation study, Environ. Model. Softw. 21 (2006)
1618–1629.

[3] United-Nation, W.C.o.E.D., Report of the world commission on environment and
development: our common future, in United Nation conference on environmental

Table 8 (continued)

Data item Value RQ

Sustainability concerns Describe the terms related to sustainability used in the paper. These include terms such as sustainability, greenability or energy
efficiency.
Describe the way energy/power was measured if it is included in paper.

RQ4

Quality terms used Describe the quality terms the researchers include in the paper:
General terms: these correspond to quality requirements, quality goals, quality concerns, software quality, technical quality, software
defects.
Specific terms: refers to both quality characteristics and quality subcharacteristics addressed in ISO 25010, including the model itself.
Also includes other hierarchical quality models such as ISO/IEC 9126, among others.

RQ4

Approach to manage interactions Describe the type of contribution presented in article (it can be a process, method, model, tool, and metric) or it may describe an
empirical study (e.g. survey, interviews). When the article does not describe it, note this in this cell. Also include the name of the
approach, as well as a brief description.

RQ5

Specific interactions Describe the specific interactions addressed in the paper. Describe the influences between sustainability concerns and the software
quality reported by the researchers, including both the potential and that validated by empirical research. Include the direction of the
influence and the related terms. (This item corresponds to text segments.)

RQ5

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

127

http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0002

development. (1987).
[4] B. Penzenstadler, A. Raturi, D. Richardson, C. Calero, H. Femmer, X. Franch,

Systematic mapping study on software engineering for sustainability (SE4S),
Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (p. 14), ACM, 2014, pp. 1–10.

[5] E. Capra, C. Francalanci, S.A. Slaughter, Is software "green"? Application devel-
opment environments and energy efficiency in open source applications, Inf.
Softw. Technol. 54 (2012) 60–71.

[6] L. Ardito, G. Procaccianti, M. Torchiano, A. Vetrò, Understanding green software
development: a conceptual framework, IT Prof. 17 (2015) 44–50.

[7] L. Ardito, M. Morisio, Green IT – available data and guidelines for reducing energy
consumption in IT systems, Sustain. Comput.: Inform. Syst. 4 (2014) 24–32.

[8] B. Kitchenham, S. Charters, Ver. 2.3 EBSE Technical Report, Technical report
EBSE, 2007.

[9] P. Lago, N. Meyer, M. Morisio, H.A. Muller, G. Scanniello, 2nd International
workshop on green and sustainable software (GREENS 2013), Proceedings of
International Conference on Software Engineering, 2013, pp. 1523–1524.

[10] B. Penzenstadler, A. Raturi, D. Richardson, B. Tomlinson, Safety, security, now
sustainability: the nonfunctional requirement for the 21st century, IEEE Softw. 31
(2014) 40–47.

[11] L. Ardito, G. Procaccianti, A. Vetro, M. Morisio, Introducing energy efficiency into
sqale, Proceedings of the Third International Conference on Smart Grids, Greeen
Communictions and IT Energy-aware Technologies, Lisbon, Portugal, 2013, pp.
28–33.

[12] C. Calero, M.A. Moraga, M.F. Bertoa, L. Duboc, Quality in use and software
greenability, Proceedings of CEUR Workshop, 2014, pp. 28–36.

[13] ISO/IEC-25010: Systems and Software Engineering – Software Product Quality
Requirements and Evaluation (SQuaRE) – Software Product Quality And System
Quality in Use Model. (2010).

[14] W.N. Robinson, S.D. Pawlowski, V. Volkov, Requirements interaction manage-
ment, ACM Comput. Surv. 35 (2003) 132–190.

[15] P. Lago, N. Meyer, M. Morisio, H.A. Müller, G. Scanniello, Leveraging "energy
efficiency to software users": summary of the second GREENS workshop, at ICSE
2013, ACM SIGSOFT Softw. Eng. Notes 39 (2014) 36–38.

[16] A.B. Bener, M. Morisio, A. Miranskyy, Green software, IEEE Softw. 31 (2014)
36–39.

[17] C. Calero, M. Piattini, Introduction to green in software engineering, in: C. Calero,
M. Piattini (Eds.), Green in Software Engineering, Springer, Cham, 2015, pp. 3–27.

[18] SustainAbility. Can Our Society Endure? Available from: http://sustainability.
com/sustainability. (accessed 29 September 2017).

[19] L.M. Hilty, B. Aebischer, ICT for sustainability: an emerging research field, in:
L. Hilty, B. Aebischer (Eds.), ICT Innovations for Sustainability. Advances in
Intelligent Systems and Computing, vol. 310, Springer, Cham, 2015, pp. 3–36.

[20] P. Lago, S.A. Koçak, I. Crnkovic, B. Penzenstadler, Framing sustainability as a
property of software quality, Commun. ACM 58 (2015) 70–78.

[21] S. Naumann, M. Dick, E. Kern, T. Johann, The GREENSOFT model: a reference
model for green and sustainable software and its engineering, Sustain. Comput.:
Inform. Syst. 1 (2011) 294–304.

[22] C. Calero, M.F. Bertoa, M.A. Moraga, A systematic literature review for software
sustainability measures, Proceedings of 2013 2nd International Workshop on
Green and Sustainable Software, GREENS 2013, 2013, pp. 46–53.

[23] B. Penzenstadler, H. Femmer, A generic model for sustainability with process- and
product-specific instances, Proceedings of the 2013 Workshop on Green in
Software Engineering, Green by Software Engineering, GIBSE 2013, 2013, pp. 3–7.

[24] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N. Seyff,
C.C. Venters, Sustainability design and software: the Karlskrona manifesto,
Proceedings of International Conference on Software Engineering, 2015, pp.
467–476.

[25] A. Noureddine, A. Bourdon, R. Rouvoy, L. Seinturier, A preliminary study of the
impact of software engineering on GreenIT, Proceedings of the 1st International
Workshop on Green and Sustainable Software, GREENS 2012, 2012, pp. 21–27.

[26] K. Erdélyi, Special factors of development of green software supporting eco sus-
tainability, Proceedings of IEEE 11th International Symposium on Intelligent
Systems and Informatics, SISY 2013, 2013, pp. 337–340.

[27] J. Taina, Good, bad, and beautiful software – in search of green software quality
factors, CEPIS UPGRADE 11 (2011) 22–27.

[28] B. Penzenstadler, V. Bauer, C. Calero, X. Franch, Sustainability in software en-
gineering: a systematic literature review, Proceedings of IET Seminar Digest, 2012,
pp. 32–41.

[29] P. Bozzelli, Q. Gu, P. Lago, A Systematic Literature Review on Green Software
Metrics, VU University, Amsterdam, 2013.

[30] P. Bourque, R.E. Fairley, Guide to the Software Engineering Body of Knowledge,
IEEE Computer Society, 2014 Version 3.0.

[31] G.A. García-Mireles, M.A.M. De La Rubia, F. García, M. Piattini, Methods for
supporting management of interactions between quality characteristics,
Proceedings of the 9th International Conference on Evaluation of Novel
Approaches to Software Engineering, ENASE 2014, 2014, pp. 93–100.

[32] S. Barney, K. Petersen, M. Svahnberg, A. Aurum, H. Barney, Software quality
trade-offs: a systematic map, Inform. Softw. Technol. 54 (2012) 651–662.

[33] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion, Requir. Eng. 11
(2006) 102–107.

[34] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting systematic
mapping studies in software engineering: an update, Inf. Softw. Technol. 64
(2015) 1–18.

[35] G.A. García-Mireles, M.Á. Moraga, F. García, M. Piattini, Approaches to promote

product quality within software process improvement initiatives: a mapping study,
J. Syst. Softw. 103 (2015) 150–166.

[36] P. Berander, L.-O. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P. Jönsson,
S. Kågström, D. Milicic, F. Mårtensson, K. Rönkkö, Software Quality Attributes and
Trade-offs, Blekinge Institute of Technology, 2005.

[37] B. Kitchenham, S.L. Pfleeger, Software quality: the elusive target [special issues
section], IEEE Softw. 13 (1996) 12–21.

[38] M. Unterkalmsteiner, T. Gorschek, A.K.M.M. Islam, C.K. Cheng, R.B. Permadi,
R. Feldt, Evaluation and measurement of software process improvement: a sys-
tematic literature review, IEEE Trans. Softw. Eng. 38 (2012) 398–424.

[39] ISO/IEC: Systems and Software Engineering – Software Life Cycle Processes –
Redline. ISO/IEC 12207:2008(E) IEEE Std 12207-2008 – Redline1-195 (2008).

[40] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a sys-
tematic review, Inf. Softw. Technol. 50 (2008) 833–859.

[41] K.S. Vallerio, L. Zhong, N.K. Jha, Energy-efficient graphical user interface design,
IEEE Trans. Mob. Comput. 5 (2006) 846–859.

[42] A. Kansal, F. Zhao, Fine-grained energy profiling for power-aware application
design, SIGMETRICS Perform. Eval. Rev. 36 (2008) 26–31.

[43] J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, J.N. Mazón, Integrating
sustainability in decision-making processes: a modelling strategy, Proceedings of
2009 31st International Conference on Software Engineering – Companion
Volume, ICSE 2009, 2009, pp. 207–210.

[44] C. Calero, M. Piattini, Green in Software Engineering, Springer International
Publishing, 2015, pp. 1–327.

[45] S.A. Koçak, G.I. Alptekin, A.B. Bener, Integrating environmental sustainability in
software product quality, Proceedings of CEUR Workshop, 2015, pp. 17–24.

[46] I. Moura, G. Pinto, F. Ebert, F. Castor, Mining energy-aware commits, Proceedings
of IEEE International Working Conference on Mining Software Repositories, 2015,
pp. 56–67.

[47] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock,
J. Clause, An empirical study of practitioners' perspectives on green software en-
gineering, Proceedings of the 38th International Conference on Software
Engineering, ACM, Austin, Texas, 2016, pp. 237–248.

[48] S.A. Chowdhury, A. Hindle, Characterizing energy-aware software projects: are
they different? Proceedings of 13th Working Conference on Mining Software
Repositories, MSR 2016, 2016, pp. 508–511.

[49] O. Gordieiev, V. Kharchenko, M. Fusani, Evolution of software quality models:
green and reliability issues, Proceedings of CEUR Workshop, 2015, pp. 432–445.

[50] M.Á. Moraga, M.F. Bertoa, Green software measurement, in: C. Calero, M. Piattini
(Eds.), Green in Software Engineering, Springer, Cham, 2015, pp. 261–282.

[51] V. Cordero, I.G.R. De Guzmán, M. Piattini, A first approach on legacy system
energy consumption measurement, Proceedings of the 2015 IEEE 10th
International Conference on Global Software Engineering Workshops, ICGSEW
2015, 2015, pp. 35–43.

[52] M. Couto, T. Carcão, J. Cunha, J.P. Fernandes, J. Saraiva, Detecting anomalous
energy consumption in android applications, in: F.M. Quintão Pereira (Ed.),
Programming Languages LNCS, vol. 8771, Springer, Cham, 2014, pp. 77–91 SBLP
2014.

[53] H. Field, G. Anderson, K. Eder, EACOF: a framework for providing energy trans-
parency to enable energy-aware software development, Proceedings of the ACM
Symposium on Applied Computing, 2014, pp. 1194–1199.

[54] C. Zhang, A. Hindle, A green miner's dataset: mining the impact of software
change on energy consumption, Proceedings of the 11th Working Conference on
Mining Software Repositories, ACM, Hyderabad, India, 2014, pp. 400–403.

[55] A. Noureddine, S. Islam, R. Bashroush, Jolinar: Analysing the energy footprint of
software applications (Demo), Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016, 2016, pp. 445–448.

[56] S.J. Chinenyeze, X. Liu, A. Al-Dubai, DEEPC: dynamic energy profiling of com-
ponents, Proceedings of the International Computer Software and Applications
Conference, 2016, pp. 186–191.

[57] C. Kin Keong, K. Tieng Wei, A.A. Abd Ghani, K.Y. Sharif, Toward using software
metrics as indicator to measure power consumption of mobile application: a case
study, Proceedings of 2015 9th Malaysian Software Engineering Conference,
MySEC 2015, 2015, pp. 172–177.

[58] Å.G. Dahlstedt, A. Persson, Requirements interdependencies: state of the art and
future challenges, in: A. Aurum, C. Wohlin (Eds.), Engineering and Managing
Software Requirements, Springer, Berlin, Heidelberg, 2005, pp. 95–116.

[59] A. Van Lamsweerde, Requirements Engineering: From System Goals to UML
Models to Software Specifications, Wiley Publishing, 2009.

[60] H. Zhang, J. Li, L. Zhu, R. Jeffery, Y. Liu, Q. Wang, M. Li, Investigating de-
pendencies in software requirements for change propagation analysis, Inf. Softw.
Technol. 56 (2014) 40–53.

[61] A. Salado, R. Nilchiani, The concept of order of conflict in requirements en-
gineering, IEEE Syst. J. 10 (2016) 25–35.

[62] G. Lami, L. Buglione, Measuring software sustainability from a process-centric
perspective, Proceedings of the 2012 Seventh International Conference on
Software Process and Product Measurement (IWSM-MENSURA) and 2012 Joint
Conference of the 22nd International Workshop on Software Measurement, IEEE,
2012, pp. 53–59.

[63] I. Manotas, L. Pollock, J. Clause, SEEDS: a software engineer's energy-optimization
decision support framework, Proceedings of the 36th International Conference on
Software Engineering, ACM, Hyderabad, India, 2014, pp. 503–514.

[64] R. Perez-Castillo, M. Piattini, Analyzing the harmful effect of god class refactoring
on power consumption, IEEE Softw. 31 (2014) 48–54.

[65] C. Sahin, L. Pollock, J. Clause, How do code refactorings affect energy usage?
Proceedings of International Symposium on Empirical Software Engineering and

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

128

http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0015
http://sustainability.com/sustainability
http://sustainability.com/sustainability
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0062

Measurement, 2014, pp. 1–10.
[66] J.J. Park, J.E. Hong, S.H. Lee, Investigation for software power consumption of

code refactoring techniques, Proceedings of the International Conference on
Software Engineering and Knowledge Engineering, SEKE, 2014, pp. 717–722.

[67] M. Gottschalk, J. Jelschen, A. Winter, Refactorings for energy-efficiency, in:
J.M. Gomez, M. Sonnenschein, U. Vogel, A. Winter, B. Rapp, N. Giesen (Eds.),
Advances and New Trends in Environmental and Energy Informatics, Springer,
Cham, 2016, pp. 77–96.

[68] E.A. Jagroep, J.M.v.d. Werf, S. Brinkkemper, G. Procaccianti, P. Lago, L. Blom,
R.v. Vliet, Software energy profiling: comparing releases of a software product,
Proceedings of the 38th International Conference on Software Engineering
Companion, ACM, Austin, Texas, 2016, pp. 523–532.

[69] I. García-Rodríguez De Guzmán, M. Piattini, R. Pérez-Castillo, Green Software
Maintenance, in: C. Calero, M. Piattini (Eds.), Green in Software Engineering,
Springer, Cham, 2015, pp. 205–229.

[70] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, A. Winter, Towards applying re-
engineering services to energy-efficient applications, in: T. Mens, A. Cleve,
R. Ferenc (Eds.), Proceedings of 2012 16th European Conference on Software
Maintenance and Reengineering, 2012, pp. 353–358.

[71] S. Abdulsalam, D. Lakomski, Q. Gu, T. Jin, Z. Zong, Program energy efficiency: the
impact of language, compiler and implementation choices, Proceedings of the
2014 International Green Computing Conference (IGCC), 2014, pp. 1–6.

[72] G. Procaccianti, H. Fernández, P. Lago, Empirical evaluation of two best practices
for energy-efficient software development, J. Syst. Softw. 117 (2016) 185–198.

[73] M. Rashid, L. Ardito, M. Torchiano, Energy consumption analysis of algorithms
implementations, Proceedings of International Symposium on Empirical Software
Engineering and Measurement, 2015, pp. 82–85.

[74] L. Corral, A.B. Georgiev, A. Sillitti, G. Succi, Method reallocation to reduce energy
consumption: an implementation in Android OS, Proceedings of the 29th Annual
ACM Symposium on Applied Computing, ACM, Gyeongju, Republic of Korea,
2014, pp. 1213–1218.

[75] D. Li, W.G.J. Halfond, An investigation into energy-saving programming practices
for android smartphone app development, Proceedings of 3rd International
Workshop on Green and Sustainable Software, GREENS 2014, 2014, pp. 46–53.

[76] G. Agosta, M. Bessi, E. Capra, C. Francalanci, Automatic memoization for energy
efficiency in financial applications, Sustain. Comput. – Inform. Syst. 2 (2012)
105–115.

[77] A. Noureddine, A. Rajan, Optimising energy consumption of design patterns,
Proceedings of 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, 2015, pp. 623–626.

[78] C. Sahin, F. Cayci, I.L.M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh,
Initial explorations on design pattern energy usage, Proceedings of 2012 1st
International Workshop on Green and Sustainable Software, GREENS 2012, 2012,
pp. 55–61.

[79] I. Manotas, C. Sahin, J. Clause, L. Pollock, K. Winbladh, Investigating the impacts
of web servers on web application energy usage, Proceedings of 2013 2nd
International Workshop on Green and Sustainable Software, GREENS 2013, 2013,
pp. 16–23.

[80] G. Procaccianti, P. Lago, W. Diesveld, Energy efficiency of ORM approaches: an
empirical evaluation, Proceedings of International Symposium on Empirical
Software Engineering and Measurement, 2016, pp. 1–10.

[81] J. Yu, H. Han, H. Zhu, Y. Chen, J. Yang, Y. Zhu, G. Xue, M. Li, Sensing human-
screen interaction for energy-efficient frame rate adaptation on smartphones, IEEE
Trans. Mob. Comput. 14 (2015) 1698–1711.

[82] A. Rajan, A. Noureddine, P. Stratis, A study on the influence of software and
hardware features on program energy, Proceedings of International Symposium on
Empirical Software Engineering and Measurement, 2016, pp. 1–10.

[83] M. Sabharwal, A. Agrawal, G. Metri, Enabling green IT through energy-aware
software, IT Prof. 15 (2013) 19–27.

[84] B. Penzenstadler, From Requirements Engineering to Green Requirements
Engineering, in: C. Calero, M. Piattini (Eds.), Green in Software Engineering,
Springer, Cham, 2015, pp. 157–186.

[85] B. Penzenstadler, J. Mehrabi, D.J. Richardson, Supporting physicians by RE4S:
evaluating requirements engineering for sustainability in the medical domain,
Proceedings of the 4th International Workshop on Green and Sustainable
Software, GREENS 2015, 2015, pp. 36–42.

[86] C. Bomfim, W. Nunes, L. Duboc, M. Schots, Modelling sustainability in a pro-
curement system: an experience report, Proceedings of 2014 IEEE 22nd
International Requirements Engineering Conference, RE 2014, 2014, pp. 402–411.

[87] A. Rodriguez, B. Penzenstadler, An assessment technique for sustainability: ap-
plying the IMAGINE approach to software systems, Proceedings of CEUR
Workshop Proceedings, 2013, pp. 1–8.

[88] M. Mahaux, P. Heymans, G. Saval, Discovering sustainability requirements: an
experience report, in: D. Berry, X. Franch (Eds.), Requirements Engineering:

Foundation for Software Quality, REFSQ 2011, Springer, Berlin, Heidelberg, 2011,
pp. 19–33 6606 LNCS.

[89] A. Raturi, B. Penzenstadler, B. Tomlinson, D. Richardson, Developing a sustain-
ability non-functional requirements framework, Proceedings of 3rd International
Workshop on Green and Sustainable Software, GREENS 2014, 2014, pp. 1–8.

[90] A. Marcus, J. Dumpert, L. Wigham, User-experience for Personal Sustainability
Software: Determining Design Philosophy and Principles, Springer, Berlin,
Heidelberg, 2011, pp. 172–177 Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics).

[91] A. Marcus, J. Dumpert, L. Wigham, User-experience for Personal Sustainability
Software: Applying Design Philosophy and Principles, Springer, Cham, 2014, pp.
583–593 Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics).

[92] C. Zhang, A. Hindle, D.M. German, The impact of user choice on energy con-
sumption, IEEE Softw. 31 (2014) 69–75.

[93] B. Penzenstadler, A Toolkit for SE for Sustainability – A Design Fiction, in:
A. Marcus (Ed.), Design, User Experience, and Usability: Design Discourse. DUXU
2015. Lecture Notes in Computer Science, vol. 9186, Springer, Cham, 2015, pp.
634–643.

[94] K. Roher, D. Richardson, A proposed recommender system for eliciting software
sustainability requirements, Proceedings of 2013 2nd International Workshop on
User Evaluations for Software Engineering Researchers, USER 2013, 2013, pp.
16–19.

[95] T.R.D. Saputri, S.W. Lee, Incorporating sustainability design in requirements en-
gineering process: a preliminary study, in: S. Lee, T. Nakatani (Eds.), Requirements
Engineering Toward Sustainable World. APRES 2016, Springer, Singapore, 2016,
pp. 53–67 671 CCIS.

[96] M.A. Beghoura, A. Boubetra, A. Boukerram, Green software requirements and
measurement: random decision forests-based software energy consumption pro-
filing, Requir. Eng. (2015), http://dx.doi.org/10.1007/s00766-015-0234-2.

[97] S. Ouhbi, J.L. Fernández-Alemán, A. Idri, J.R. Pozo, Are mobile blood donation
applications green? Proceedings of 2015 10th International Conference on
Intelligent Systems: Theories and Applications, SITA 2015, 2015, pp. 1–6.

[98] S. Abdulsalam, Z. Zong, Q. Gu, M. Qiu, Using the greenup, powerup, and speedup
metrics to evaluate software energy efficiency, Proceedings of 2015 6th
International Green and Sustainable Computing Conference, 2015, pp. 1–8.

[99] S.D. Ambrosio, S.D. Pasquale, G. Iannone, D. Malandrino, A. Negro, G. Patimo,
A. Petta, V. Scarano, L. Serra, R. Spinelli, Mobile phone batteries draining: Is green
web browsing the solution? Proceedings of 2014 International Green Computing
Conference (IGCC), 2014, pp. 1–10.

[100] Chang, S.-W., Cheng, S.-W., Hsiu, P.-C., Kuo, T.-W., Lin, C.-W., Application be-
havior analysis in resource consumption for mobile devices, in Proceedings of the
29th Annual ACM Symposium on Applied Computing, ACM: Gyeongju, Republic
of Korea. p. 1469–1474.

[101] F. Ahmed, H. Mahmood, A. Aslam, Green computing and software defects in open
source software: an empirical study, Proceedings of 2014 International Conference
on Open Source Systems and Technologies, ICOSST 2014, 2014, pp. 65–69.

[102] Aggarwal, K., Zhang, C., Campbell, J.C., Hindle, A., Stroulia, E., The power of
system call traces: predicting the software energy consumption impact of changes,
in Proceedings of 24th Annual International Conference on Computer Science and
Software Engineering, IBM Corp.: Markham, Ontario, Canada. p. 219–233.

[103] S.A. Koçak, G.I. Alptekin, A.B. Bener, Evaluation of software product quality at-
tributes and environmental attributes using ANP decision framework, Proceedings
of CEUR Workshop Proceedings, 2014, pp. 37–44.

[104] F. Rahman, C. O'Brien, S.I. Ahamed, H. Zhang, L. Liu, Design and implementation
of an open framework for ubiquitous carbon footprint calculator applications,
Sustain. Comput.: Inform. Syst. 1 (2011) 257–274.

[105] R. Amri, N. Bellamine Ben Saoud, Towards a generic sustainable software model,
Proceedings of the 2014 4th International Conference on Advances in Computing
and Communications, ICACC 2014, Institute of Electrical and Electronics
Engineers Inc., 2014, pp. 231–234.

[106] J. Iivari, Why are CASE tools not used? Commun. ACM 39 (1996) 94–103.
[107] S. Naumann, E. Kern, M. Dick, T. Johann, Sustainable Software Engineering:

Process and Quality Models, Life Cycle, and Social Aspects, in: L. Hilty,
B. Aesbischer (Eds.), ICT Innovations for Sustainability. Advances in Intelligent
Systems and Computing, vol. 310, Springer, Cham, 2015, pp. 91–205.

[108] K. Sierszecki, T. Mikkonen, M. Steffens, T. Fogdal, J. Savolainen, Green software:
greening what and how much? IEEE Softw. 31 (3) (2014) 64–68.

[109] B.A. Kitchenham, D. Budgen, O. Pearl Brereton, Using mapping studies as the basis
for further research – a participant-observer case study, Inf. Softw. Technol. 53
(2011) 638–651.

[110] B. Kitchenham, P. Brereton, A systematic review of systematic review process
research in software engineering, Inf. Softw. Technol. 55 (2013) 2049–2075.

G.A. García-Mireles et al. Information and Software Technology 95 (2018) 108–129

129

http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0080
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0081
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0082
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0083
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0084
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0085
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0086
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0087
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0088
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0089
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0090
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0091
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0092
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0092
http://dx.doi.org/10.1007/s00766-015-0234-2
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0094
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0095
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0096
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0097
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0098
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0099
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0100
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0101
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0102
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0103
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0104
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0105
http://refhub.elsevier.com/S0950-5849(17)30314-2/sbref0105

	Interactions between environmental sustainability goals and software product quality: A mapping study
	Introduction
	Background
	Sustainability in software engineering
	Related literature reviews

	Planning of the SMS to provide an overview of software quality and sustainability
	Search strategy
	Study selection
	Study classification

	Results of the SMS: interactions between software quality and environmental sustainability
	Profile of selected papers
	Trends in publication (GQ1-RQ1)
	Software engineering topics (GQ1-RQ2)
	Research type (GQ1-RQ3)
	What approaches are used to describe software quality in the context of interactions with sustainability aspects? (GQ1-RQ4)

	Interactions between environmental sustainability goals and product quality characteristics
	Methodological support for managing interactions between software quality and sustainability goals (GQ2-RQ1)
	Interactions between software quality and sustainability aspects (GQ2-RQ2)

	Summary and implications of the SMS
	Research implications
	Practical implications

	Study limitations
	Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C
	C.1. Search string
	C.2. Selection criteria
	C.3. Procedure for selecting primary papers
	C.4. Quality assessment
	C.5. Data extraction and classification

	Appendix D
	References

